# Volume 7, Number 2

February 2001

## **Co-Editors**

John F. Smith Extension Specialist Dairy Science Dan Waldner Extension Specialist Dairy Science Mike Brouk Extension Specialist Dairy Science

## Contributors

Karen Schmidt Professor, Dairy Products John Shirley

Professor, Dairy Science

Jeff Stevenson Professor, Dairy Science Dave Sukup

Manager, Heart of America DHI

## Upcoming Events

Garden City Dairy Seminar March 28 Garden City, Kan.

Spring Fair Dairy Show March 23-25 Oklahoma City, Okla.

Holstein Southern National & Holstein Show and Sale April 9-14 Payne County Expo Center Stillwater, Okla.



Printing sponsored by



### DAIRY RESEARCH & EXTENSION NEWS http://www.oznet.ksu.edu/ansi/nletter/dairylin.htm

Managing Milk Composition: Normal Sources of Variation

This article is part of a fact sheet series produced by Extension Dairy Specialists from Oklahoma, Texas and New Mexico.

Many factors influence the composition of milk, the major components of which are water, fat, protein, lactose and minerals. Nutrition or dietary influences readily alter fat concentration and milk protein concentration. Fat concentration is the most sensitive to dietary changes and can vary over a range of nearly 3.0 percentage units. Dietary manipulation results in milk protein concentration changing approximately 0.60 percentage units. The concentrations of lactose and minerals, the other solids constituents of milk, do not respond predictably to adjustments in diet.

Milk composition and component yields also can be affected by genetics and environment, level of milk production, stage of lactation, disease (mastitis), season, and age of cow.

# Normal Sources of Variation in Composition

*Genetics and Environment:* Table 1 contains the breed averages for percent-

age of milk fat, total protein, true protein and total solids. A change in milk composition using traditional breeding techniques occurs slowly, although new techniques of genetic manipulation may allow faster progress in the future. Yields of milk, fat, protein and total solids are not easily impacted by genetics; heritability estimates for yield are relatively low at about 0.25. Meanwhile, heritability estimates for milk composition are fairly high at 0.50. Conversely, environmental factors such as nutrition and feeding management will impact yield more than the actual percent composition of the major milk constituents.

The priority placed on each genetic trait depends upon its economic or profit impact. Milk yield per cow tends to receive the most attention by producers. However, component yields should not to be overlooked. Genetic selection should be directed toward increasing fat, protein and nonfat solids yields. But, because component percentages tend to have negative genetic associations with yield traits, a

continued on page 3

Table 1. Breed averages for percentages of milk fat, total protein, true protein and total solids.

|                   |              | 1 01            | UCIII            |        |   |
|-------------------|--------------|-----------------|------------------|--------|---|
| Breed             | Total<br>Fat | True<br>Protein | Total<br>Protein | Solids | - |
| Ayrshire          | 3.88         | 3.31            | 3.12             | 12.69  | - |
| Brown Swiss       | 3.98         | 3.52            | 3.33             | 12.64  |   |
| Guernsey          | 4.46         | 3.47            | 3.28             | 13.76  |   |
| Holstein          | 3.64         | 3.16            | 2.97             | 12.24  |   |
| Jersey            | 4.64         | 3.73            | 3.54             | 14.04  |   |
| Milking Shorthorn | 3.59         | 3.26            | 3.07             | 12.46  | _ |

| Heart of America Dairy     | Herd In      | nprovei | ment Si      | ummary     | ' (Jan) |
|----------------------------|--------------|---------|--------------|------------|---------|
|                            | Quartiles    |         |              |            | Vour    |
|                            | 1            | 2       | 3            | 4          | Herd    |
| Avrshire                   |              |         |              |            |         |
| Rolling Herd Average       | 18,478       | 16,035  | 14,462       | 12,524     |         |
| Summit Milk Yield 1st      | 59.0         | 57.0    | 52.0         | 21.0       |         |
| Summit Milk Yield 2nd      | 76.5         | 31.0    | 63.0         | 58.5       |         |
| Summit Milk Yield 3rd      | 80.0         | 36.0    | 70.0         | 28.5       |         |
| Summit Milk Yield Avg.     | 1 2.5        | 01.5    | 01.5<br>840  | 01.0       |         |
| SCC Average                | 326          | 83.0    | 326          | 125        |         |
| Days to 1st Service        | 70           | 28      | 66           | 64         |         |
| Days Open                  | 139          | 134     | 118          | 171        |         |
| Projected Calving Interval | 13.8         | 13.6    | 13.1         | 14.8       |         |
| Brown Swiss                |              |         |              |            |         |
| Rolling Herd Average       | 20,309       | 16,891  | 15,360       | 13,161     |         |
| Summit Milk Yield 1st      | 65.1         | 55.7    | 52.0         | 45.7       |         |
| Summit Milk Yield 2nd      | 05.3<br>85.2 | 05.4    | 00.0<br>60.2 | 58.7       |         |
| Summit Milk Yield Avg      | 76.1         | 65.5    | 63.0         | 55.2       |         |
| Income/Feed Cost           | 1,726        | 1,186   | 1,000        | 852        |         |
| SCC Average                | 473          | 384     | 307          | 394        |         |
| Days to 1st Service        | 90           | 52      | 95           | 48         |         |
| Days Open                  | 169          | 152     | 148          | 197        |         |
| Projected Calving Interval | 14.7         | 14.2    | 14.0         | 15.7       |         |
| Guernsey                   |              |         |              |            |         |
| Rolling Herd Average       | 15,772       | 14,586  | 13,606       | 12,783     |         |
| Summit Milk Yield 1st      | 27.5         | 52.5    | 49.0         | 46.6       |         |
| Summit Milk Yield 3rd      | 68.5         | 64.5    | 61.5         | 61.6       |         |
| Summit Milk Yield Avg.     | 66.0         | 60.5    | 54.0         | 55.6       |         |
| Income/Feed Cost           | 1,259        | 1,198   | 852          | 730        |         |
| SCC Average                | 108          | 227     | 184          | 499        |         |
| Days to 1st Service        | 84           | 80      | 98           | 114        |         |
| Days Open                  | 250          | 158     | 157          | 252        |         |
| Projected Calving Interval | 17.5         | 14.4    | 14.4         | 17.5       |         |
| Holstein                   | 22 250       | 20 411  | 10 175       | 14 970     |         |
| Summit Milk Vield 1st      | 25,550       | 20,411  | 60.8         | 52.4       |         |
| Summit Milk Yield 2nd      | 92.3         | 83.2    | 75.2         | 62.8       |         |
| Summit Milk Yield 3rd      | 97.8         | 88.7    | 80.1         | 68.2       |         |
| Summit Milk Yield Avg.     | 86.4         | 79.1    | 72.4         | 62.6       |         |
| Income/Feed Cost           | 1,636        | 1,359   | 1,175        | 847        |         |
| SCC Average                | 368          | 379     | 407          | 522        |         |
| Days to 1st Service        | 91           | 92      | 91<br>177    | 89<br>107  |         |
| Projected Calving Interval | 14 5         | 14 7    | 15.0         | 15.6       |         |
| Incov                      | 11.5         | 11.7    | 15.0         | 15.0       |         |
| Rolling Herd Average       | 17.349       | 15.110  | 13.771       | 11.867     |         |
| Summit Milk Yield 1st      | 54.7         | 49.4    | 44.7         | 42.0       |         |
| Summit Milk Yield 2nd      | 65.4         | 65.2    | 58.1         | 52.0       |         |
| Summit Milk Yield 3rd      | 69.7         | 65.4    | 58.8         | 53.2       |         |
| Summit Milk Yield Avg.     | 63.5         | 59.7    | 54.6         | 48.9       |         |
| Income/Feed Cost           | 1,461        | 1,336   | 1,138        | 842<br>407 |         |
| Days to 1st Service        | 270          | 89      | 76           | 90         |         |
| Days Open                  | 138          | 155     | 137          | 140        |         |
| Projected Calving Interval | 13.7         | 14.3    | 13.7         | 13.8       |         |
| Milking Shorthorn          |              |         |              |            |         |
| Rolling Herd Average       | 17,620       | 15,067  | 14,704       | 11,924     |         |
| Summit Milk Yield 1st      | 50.0         | 55.0    | 50.0         | 54.0       |         |
| Summit Milk Yield 2nd      | 66.0         | 72.0    | 61.5         | 30.0       |         |
| Summit Milk Yield 3rd      | 74.0         | 75.0    | 66.0         | 63.5       |         |
| Summit Milk Yield Avg.     | 67.0         | 09.0    | 39.5         | 00.5       |         |
| SCC Average                | 230          | 239     | 302          | 199        |         |
| Days to 1st Service        | 0            | 42      | 92.5         | 56.5       |         |
| Days Open                  | 178          | 199     | 169          | 130        |         |
| Projected Calving Interval | 15.1         | 15.7    | 14.8         | 13.5       |         |

| Hay P   | Prices*—Kansas            |                |                |
|---------|---------------------------|----------------|----------------|
|         | Location                  | Quality        | Price (\$/ton) |
| Alfalfa | Southwestern Kansas       | Supreme        | 110-120        |
| Alfalfa | Southwestern Kansas       | Premium        | 100-110        |
| Alfalfa | Southwestern Kansas       | Good           | _              |
| Alfalfa | South Central Kansas      | Supreme        | 100-110        |
| Alfalfa | South Central Kansas      | Premium        | 100            |
| Alfalfa | South Central Kansas      | Good           | —              |
| Alfalfa | Southeastern Kansas       | Supreme        | —              |
| Alfalfa | Southeastern Kansas       | Premium        | 90-105         |
| Alfalfa | Southeastern Kansas       | Good           | _              |
| Alfalfa | Northwestern Kansas       | Supreme        | 100-105        |
| Alfalfa | Northwestern Kansas       | Premium        | 90-100         |
| Alfalfa | Northwestern Kansas       | Good           | —              |
| Alfalfa | North Central/East Kansas | Supreme        | 50-58cents/pt  |
| Alfalfa | North Central/East Kansas | Premium        | 90-105         |
| Alfalfa | North Central/East Kansas | Good           | —              |
|         | Summaria - avan 190 DEV ( | and then 27 AT |                |

Supreme = over 180 RFV (less than 27 ADF) Premium = 150–180 RFV (27–30 ADF) Good = 125–150 RFV (30–32 ADF)

Source: USDA Kansas Hay Market Report, February 10, 2001.

#### Hay Prices—Oklahoma

|         | Location            | Quality | Price (\$/ton) |
|---------|---------------------|---------|----------------|
| Alfalfa | Central/Western, OK | Premium | 95-120         |
| Alfalfa | Central/Western, OK | Good    | 85-105         |
| Alfalfa | Panhandle, OK       | Premium | 95-110         |
| Alfalfa | Panhandle, OK       | Good    | 90-105         |
|         |                     |         |                |

Source: Oklahoma Department of Agriculture, February 8, 2001.

| Feed Stuffs Prices      |                  |                |  |
|-------------------------|------------------|----------------|--|
|                         | Location         | Price (\$/ton) |  |
| Blood Meal              | Central US       | 421            |  |
| Corn Gluten Feed        | Kansas City      | 85-87          |  |
| Corn Gluten Meal        | Kansas City      | 182            |  |
| Corn Hominy             | Kansas City      | 68             |  |
| Cotton Seed Meal        | Kansas City      | 180            |  |
| Whole Cotton Seed       | Memphis          | 120            |  |
| Distillers Grains       | Central Illinois | 100-110        |  |
| Pork—Meat and Bone Meal | Texas Panhandle  | —              |  |
| SBM 48%                 | Kansas City      | 163-173        |  |
| Sunflower Meal          |                  | 110            |  |
| Wheat Middlings         | Kansas City      | 61-63          |  |

Source: USDA Feedstuff Market Review, February 7, 2001.

# Garden City Dairy Seminar set for March 28.

The Garden City Dairy Seminar will take place March 28 at the Plaza Hotel in Garden City, Kan.

Forage Quality Boom or Bust is the theme of this year's program, which begins at 4 p.m. Featured speakers are K-State Research and Extension Dairy Specialist Mike Brouk and Bill Mahonna of Pioneer Hi-Bred.

Dinner will be served at 6 p.m. and is sponsored by Miguel Dairy Service and High Plains Dairy Construction. The program concludes at 8:30 p.m.

Please RSVP by calling Tamie at 785-532-1280.

#### Continued from page 1

Table 2. Change in milk constituents associated with elevated somatic cell counts.

| Constituent        | Normal<br>Milk | High SCC<br>Milk | Percent of<br>Normal |
|--------------------|----------------|------------------|----------------------|
|                    |                | %                |                      |
| Milk nonfat solids | 8.9            | 8.8              | 99                   |
| Fat                | 3.5            | 3.2              | 91                   |
| Lactose            | 4.9            | 4.4              | 90                   |
| Total protein      | 3.61           | 3.56             | 99                   |
| Total casein       | 2.8            | 2.3              | 82                   |
| Whey protein       | 0.8            | 1.3              | 162                  |
| Sodium             | 0.057          | 0.105            | 184                  |
| Chloride           | 0.091          | 0.147            | 161                  |
| Potassium          | 0.173          | 0.157            | 91                   |
| Calcium            | 0.12           | 0.04             | 33                   |

Adapted from Harmon, 1994. J. Dairy Science 77:2103

change in these percentages is not likely to be achieved through genetic selection alone.

*Level of Production:* Yields of fat, protein, nonfat solids and total solids are highly and positively correlated with milk yield. Under selection programs that emphasize milk yield, fat and protein yields also increase. However, the percentages of fat and protein in the total composition decrease.

The concept of milk component yield versus milk composition can be illustrated by comparing different bulk tank production averages with similar protein composition. If the tank average increases from 65 pounds to 70 pounds while protein composition remains constant at 3.1 percent, an additional 0.16 pound of protein is produced per cow per day. However, if the percentage of protein increases from 3.1 to 3.2 percent while the bulk tank average production remains at 65 pounds, protein production (yield) increases by only 0.07 pound per cow per day.

*Stage of Lactation:* The concentration of milk fat and protein is highest in early and late lactation and lowest during peak milk production through mid-lactation (Fig. 1). Normally, an increase in milk yield is followed by a decrease in the percentages of milk fat and protein while the yields of these constituents remain unchanged or increase.

Figure 1. Milk, fat and protein by stage of lactation for New Mexico, Oklahoma and Texas Holstein herds on DHIA.



(Source: DRMS, Raleigh, NC)

*Disease:* Although other diseases can affect milk component content and distribution, mastitis has been the predominate disease studied. Table 2 shows the compositional changes in milk constituents associated with elevated somatic cell counts (a measure of severity of the disease). Mastitis results in a reduction in fat and casein content and an increase in whey content of milk. These changes in the milk proteins, in conjunction with alterations in lactose, mineral content and milk pH, result in lower cheese yields and altered manufacturing properties. Milk from cows with elevated somatic cell counts (greater than 500,000 somatic cells/ml) has longer coagulation time and forms weaker curds than milk from cows with lower somatic cell counts.

*Season:* Milk fat and protein percentages are highest during the fall and winter and lowest during the spring and summer (Fig. 2). This variation is related to changes in both the types of feed available and climatic conditions. Lush spring pastures low in fiber depress milk fat. Hot weather and high humidity decrease dry matter intake and increase feed sorting, resulting in lower forage and fiber intake.

Figure 2. Monthly change in milk production and composition for New Mexico, Oklahoma and Texas Holstein herds on DHIA.



(Source: DRMS, Raleigh, NC)

*Age (Parity):* While milk fat content remains relatively constant, milk protein content gradually decreases with advancing age. A survey of Holstein DHIA (Dairy Herd Improvement Association) lactation records indicates that milk protein content typically decreases 0.10 to 0.15 units over a period of five or more lactations or approximately 0.02 to 0.05 units per lactation.

#### Summary

Many factors besides nutrition management can influence milk composition. This is an important point to remember when evaluating the potential to improve a herd's milk composition and component yields. Certainly, genetics plays an important role, but changes here are slow. Producers who pay attention to detail, keep disease to a minimum and adjust their management program as the seasons dictate will be in the best position to take advantage of nutrition management changes to alter milk composition and improve their bottom line. COOPERATIVE EXTENSION SERVICE U.S. DEPARTMENT OF AGRICULTURE KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

Dairy Lines is jointly published for dairy producers by the Department of Animal Sciences and Industry, K-State Research and Extension, and the Department of Animal Science, Oklahoma Cooperative Extension Service. For more information or questions, please contact 785.532.5654 (K-State) or 405.744.6058 (OSU).

Kansas State University **K-State Research & Extension** Department of Animal Sciences and Industry Call Hall, Room 139 Kansas State University Manhattan, Kansas 66506

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, religion, national origin, sex, age, or disability.

**Dairy Lines** 

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquiries from other individuals, associations and firms that may be interested in cosponsoring this publication.

John Smith Extension Specialist Dairy Science K-State

mike

Mike Brouk Extension Specialist Dairy Science K-State

Dan Waldner Extension Specialist Dairy Science Oklahoma State

DAIRY RESEARCH AND EXTENSION NEWS K-State Research and Extension and Oklahoma State University