February 2002

Volume 8, Number 2 Co-Editors

John F. Smith Extension Specialist, Dairy Science

Dan Waldner Extension Specialist, Dairy Science

Mike Brouk Extension Specialist, Dairy Science

Contributors

Karen Schmidt Professor, Dairy Products

John Shirley Professor, Dairy Science

Jeff Stevenson

Professor, Dairy Science Dave Sukup Manager, Heart of America DHI

Upcoming Events March 15-17

Youth Expo- Dairy Show Oklahoma City, ,Okla.

March 21, 10 a.m. PCDART, Producer Training Animal Science Arena Stillwater, Okla.

April 8–13 Holstein Southern National Stillwater, Okla.

Printing sponsored by

DAIRY RESEARCH & EXTENSION NEWS

http://www.oznet.ksu.edu/dp_ansi/dairylin.htm

Combination of soaking, fans most effective way to cool cows, study shows

M.J. Brouk, J.F. Smith, and J.P. Harner Kansas State University

Summer seems a long way off, but before you know it we'll be dealing with heat stress. In the meantime, here are results of a study conducted by Kansas State University's dairy team that will help you keep your cows cooler this summer.

Have you ever wondered whether you should soak cows, increase airflow or both? Many producers have asked which is most important. Last summer our team conducted a study to determine the effect of soaking frequency and airflow on respiration rates and skin temperature of heatstressed dairy cattle.

Sixteen heat-stressed lactating cows (8 primiparous and 8 multiparous) were arranged in a replicated 8-by-8 Latin square design. Cattle were housed in freestall dairy barns and milked two times. During testing, cattle were moved to a tie-stall barn for a two-hour period from either 1 p.m. to 3 p.m. or 3 p.m. to 5 p.m. on eight different days in late August and early September. Afternoon temperatures ranged between 88° F and 96° F.

During the testing period, respiration rates were determined every five minutes by visual evaluation. Skin temperature of three sites was measured with an infrared thermometer and recorded every five minutes. Treatments (Table 1) were four different soaking frequencies with and without supplemental airflow. Soaking frequencies were control (no soaking), every five, every 10 or every 15 minutes. Supplemental airflow was either none or 700 cfm. Each soaking cycle provided similar amounts of water for all treatments. Initial data were collected for three, five-minute periods before the start of the treatments. Cows soaked every five minutes

with supplemental airflow (5+F) re-

continued on page 2

Table 1. Experimental Treatments.

Treatment	Soaking frequency*	Supplemental Airflow
0	None	None
0 + F	None	700 cfm
5	Every 5 minutes	None
5+F	Every 5 minutes	700 cfm
10	Every 10 minutes	None
10 + F	Every 10 minutes	700 cfm
15	Every 15 minutes	None
15 + F	Every 15 minutes	700 cfm

*.35 gallon/headlock applied in 1 minute

Continued from page 1

sponded with the fastest and largest drop in respiration rate, with the initial respiration rate reduced by 47 percent at the end of 90 minutes of treatment (Figures 1 and 2). Soaking cows every five minutes without airflow (5) resulted in a response similar to soaking cows every 10 minutes with airflow (10+F). Soaking cows every 15 minutes with airflow (15+F) and soaking cows every 10 minutes without airflow (10) resulted in similar responses until the last 30 minutes of the study. Supplemental airflow without soaking (0+F) resulted in little improvement over no soaking or airflow (0). Soaking had a greater effect on respiration rate than airflow. The combination of wetting and airflow had the greatest effect on the respiration rate. When cooling heat stressed dairy cattle, the most effective treatment included continuous supplemental airflow and wetting every five minutes.

This data suggests that different cooling strategies could be developed for different levels of heat stress. Under severe heat stress soaking every five minutes with fan cooling will be the most effective. During periods of moderate stress soaking every 10 minutes with fan cooling may be adequate. Reducing soaking frequency when temperatures are lower could significantly reduce water usage.

Data clearly indicate that the combination of soaking and supplemental fan cooling are superior to either single treatment. If used singularly, soaking cows would have more impact than the use of fans only for cow cooling. These data indicate that about one third of the total reduction in cow respiration rates was due to airflow and the remainder due to soaking. Under periods of severe heat stress, soaking every 15 minutes with airflow is not adequate, and soaking frequency must be increased.

Cow cooling with soaking and supplemental airflow is very effective in reducing respiration rate. Many systems may be ineffective because they do not deliver enough water to soak the cow, and soaking frequency is inadequate.

Figure 2. Initial, Final and Percentage of Initial Respiration Rate of Heat Stressed Dairy Cattle Treated with Different Cooling Strategies.

Heart of America Dairy	Herd In	nprover	nent Su	ummary	
	Quartiles			Your	
	1	2	3	4	Herd
Ayrshire					
Rolling Herd Average	18,486	16,049	14,807	12,457	
Summit Milk Yield 1st	67.0	57.5	26.5	42.0	
Summit Milk Yield 2nd	72.0	69.5	31.0	52.5	
Summit Milk Yield 3rd	43.0	69.5	59.0	64.5	
Income/Feed Cost	1.676	1 248	1 475	55.5 607	
SCC Average	140	411	354	384	
Days to 1st Service	49	126	35.5	59.0	
Days Open	110	149	111	213	
Projected Calving Interval	12.8	14.1	12.9	16.2	
Brown Swiss					
Rolling Herd Average	19,945	17,284	15,630	13,614	
Summit Milk Yield 1st	64.6 75.5	49.1	54.5	44.8	
Summit Milk Yield 3rd	92.0	70.7	70.0	65.4	
Summit Milk Yield Avg.	74.3	70.4	64.8	59.0	
Income/Feed Cost	2,013	1,684	1,131	1,131	
SCC Average	421	402	393	393	
Days to 1st Service	88	50	73	73	
Days Open	184	185	234	234	
Projected Calving Interval	15.2	15.3	16.9	16.9	
Guernsey	10.020	15 152	12402	10.000	
Rolling Herd Average	18,930	15,153	13492	12,323	
Summit Milk Yield 2nd	36.0	61.6	42.5 54.0	46.5	
Summit Milk Yield 3rd	80.0	62.6	54.5	60.0	
Summit Milk Yield Avg.	71.0	58.6	51.5	56.3	
Income/Feed Cost	1,621	1,425	1,155	1,240	
SCC Average	283	317	154	380	
Days to 1st Service	92	107	90.5	102	
Projected Calving Interval	130	15.4	195	15.3	
II-1-t-in	15.7	15.4	15.0	15.5	
Rolling Herd Average	22 774	19 943	19 943	17 614	
Summit Milk Yield 1st	72.4	65.7	65.7	59.5	
Summit Milk Yield 2nd	92.5	82.8	82.8	73.5	
Summit Milk Yield 3rd	97.5	87.7	87.7	79.0	
Summit Milk Yield Avg.	86.7	78.3	78.3	70.9	
Income/Feed Cost	2,113	1,775	1,775	1,520	
SCC Average	5//	411	411	447	
Days Open	172	173	173	183	
Projected Calving Interval	14.8	14.9	14.9	15.2	
Jersev					
Rolling Herd Average	17,101	14,824	13,467	11,152	
Summit Milk Yield 1st	53.3	42.8	43.6	42.9	
Summit Milk Yield 2nd	58.7	60.4	54.7	53.2	
Summit Milk Yield 3rd	73.5	58.3	58.7	50.2	
Summit Milk Yield Avg.	04.0	57.8	52.7	49.8	
SCC Average	363	321	351	568	
Days to 1st Service	84	71	89	86	
Days Open	142	138	142	194	
Projected Calving Interval	13.9	13.7	13.9	15.5	
Milking Shorthorn					
Rolling Herd Average	15,855	14,995	14,174	10,720	
Summit Milk Yield 1st	51.0	57.5	50.5	46.0	
Summit Milk Yield 2nd	56.0 75.0	05.5	04.5	54.5	
Summit Milk Yield Avo	62.0	65.5	63.5	55.0	
Income/Feed Cost	1,593	1,319	1,566	928	
SCC Average	217	189	273.5	377	
Days to 1st Service	83	45	86	102	
Days Open	88	221	124	187	
Projected Calving Interval	12.1	16.5	13.2	15.4	

нау Р	rices*—Kansas		
	Location	Quality	Price (\$/ton)
Alfalfa	Southwestern Kansas	Supreme	125-135
Alfalfa	Southwestern Kansas	Premium	105-120
Alfalfa	Southwestern Kansas	Good	—
Alfalfa	South Central Kansas	Supreme	120-135
Alfalfa	South Central Kansas	Premium	100-125
Alfalfa	South Central Kansas	Good	—
Alfalfa	Southeastern Kansas	Supreme	110-120
Alfalfa	Southeastern Kansas	Premium	100-110
Alfalfa	Southeastern Kansas	Good	80-90
Alfalfa	Northwestern Kansas	Supreme	110-120
Alfalfa	Northwestern Kansas	Premium	100-110
Alfalfa	Northwestern Kansas	Good	—
Alfalfa	North Central Kansas	Supreme	115-130
Alfalfa	North Central Kansas	Premium	100-115
Alfalfa	North Central Kansas	Good	70-80

Supreme = over 180 RFV (less than 27 ADF) Premium = 150–180 RFV (27–30 ADF) Good = 125–150 RFV (30–32 ADF)

Source: USDA Kansas Dept. of Ag Market News Service Report, Feb. 15, 2002

Hay Prices—Oklahoma			
	Location	Quality	Price (\$/ton)
Alfalfa	Central/Western, OK	Premium	105-115
Alfalfa	Central/Western, OK	Good	95-105
Alfalfa	Panhandle, OK	Premium	110-120
Alfalfa	Panhandle, OK	Good	90-105

Source: Oklahoma Department of Ag-USDA Market News Service, Feb. 14, 2002

Feed Stuffs Prices

	Location	Price (\$/ton)
Blood Meal	Central US	296-300
Corn Gluten Feed	Kansas City	67-71
Corn Gluten Meal	Kansas City	240-255
Corn Hominy	Kansas City	75-78
Cotton Seed Meal	Kansas City	150-152
Whole Cotton Seed	Memphis	90
Distillers Grains	Nebraska	75-90
Pork—Meat and Bone Meal	Texas Panhandle	160
SBM 48%	Kansas City	153-155
Wheat Middlings	Kansas City	57-62

Source: USDA Market News Service, February 13, 2002

COOPERATIVE EXTENSION SERVICE U.S. DEPARTMENT OF AGRICULTURE KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

Dairy Lines is jointly published for dairy producers by the Department of Animal Sciences and Industry, K-State Research and Extension, and the Department of Animal Science, Oklahoma Cooperative Extension Service. For more information or questions, please contact 785.532.5654 (K-State) or 405.744.6058 (OSU).

Kansas State University **K-State Research & Extension** Department of Animal Sciences and Industry Call Hall, Room 139 Kansas State University Manhattan, Kansas 66506 KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, religion, national origin, sex, age, or disability.

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquiries from other individuals, associations and firms that may be interested in cosponsoring this publication.

John Smith Extension Specialist Dairy Science K-State

Mike Brouk Extension Specialist Dairy Science K-State

Dan Waldner Extension Specialist Dairy Science Oklahoma State

