September 1998

Volume 4, Number 9

Co-Editors

John F. Smith Extension Specialist, Dairy Science Dan Waldner Extension Specialist, Dairy Science

Contributors

Karen Schmidt Associate Professor, Dairy Products John Shirley Associate Professor, Dairy Science Jeff Stevenson Professor, Dairy Science

Dave Sukup Manager, Heart <mark>of America DHI</mark>

Upcoming Events September 18-22

September 18-22 State Fair of Oklahoma Dairy Cattle Show Youth Dairy Judging Contest 9 a.m.—Sept. 19 Oklahoma City

September 24-27 Tulsa State Fair Youth Dairy Judging Contest 9 a.m.—Sept. 26 Tulsa

> November 18, 19, 20 Adel Dairy Days

Food • Health • Hope™

DAIRY RESEARCH & EXTENSION NEWS

http://www.oznet.ksu.edu/dp_ansi/dairylin.htm

Ear Molds Found In 1998 Kansas Corn Crop

by Doug Jardine, Extension State Leader Plant Pathology

Kansas corn producers should consider testing their 1998 crop for aflatoxin and other mycotoxins.

At least four kinds of ear mold have been diagnosed in corn samples received at the Plant Disease Diagnostic Clinic.

Aspergillus ear rot, the producer of aflatoxin, has been detected, as well as Fusarium, Gibberella and Penicillium ear rot. Of those present, Aspergillus is the major concern at the moment. All dryland corn produced south of U.S. Highway 54 should probably be tested before feeding to dairy cattle.

Aflatoxin is produced by the mold Aspergillus flavus and it alarms people. This olive-green mold grows between kernels, but its presence does not guarantee an aflatoxin infection. A chemical test is necessary to make that call.

A "black light" test is often used to screen grain for Aspergillus flavus. The mold "fluoresces" (glows) under a black light, but less than 50 percent of "fluorescent" grain actually tests positive for aflatoxin.

The FDA safe level for aflatoxin is 20 parts per billion (ppb). The standards indicate that grain testing at 20 to 100 ppb of aflatoxin should not be used for human consumption or as feed for immature animals (including poultry) or dairy animals. It can be used as feed for breeding cattle, swine and mature poultry, however.

Grain testing at 100 to 200 ppb is suitable for finishing swine

(over 100 pounds) or beef cattle. Levels between 200 and 300 ppb limits grain use to finishing beef cattle only. Grain with aflatoxin levels higher than 300 ppb cannot be used as feed unless it is cleaned or diluted (blended) with clean grain. Blending is only acceptable with FDA approval and blended grain can only be used as livestock feed.

Producers should screen grain from suspect fields with the black light test. Fields with positive samples should be harvested and dried as quickly as possible to 13 or 14 percent moisture.

Keep aflatoxin-contaminated corn separate from sound corn and use extra care in cleaning bins that may have held contaminated grain.

Fusarium, Gibberella and Penicillium ear rot have also been found in corn samples this year.

Warm, dry weather favors Fusarium development, while cool, wet weather within three weeks of silking favors Gibberella. Fusarium is a powdery, or cottony-pink mold. Gibberella produces a red mold near the ear tip. Livestock fed Gibberella-infected corn will often refuse feed, vomit or show signs of estrogenic syndrome (especially swine). Penicillium is a greenish-blue mold usually found around the tips of damaged ears. While Penicillium can produce toxins, it is not known to cause feeding problems in Kansas, but it can cause dockage due to poor grain quality.

Heart of America Dairy Herd Improvement Summary (August)						
	Quartiles				Verm	
	1	2	3	4	Herd	
Aurshiro			-			
Rolling Herd Average	16 495	14 431	12 116	10 432		
Poak Milk Vield 1st	66.0	56.0	12,110	39.5		
Peak Milk Yield 2nd	77.0	67.3	52 5	51.0		
Poak Milk Vield 3rd	86.0	75.6	67.5	66.3		
Peak Milk Yield Avg	76.0	63.6	58.0	62.0		
Income/Feed Cost	917	826	832	420		
SCC Average	307	285	351	286		
Days to 1st Service	77	89	90	107		
Days Open	116	120	137	171		
Projected Calving Interval	13.0	13.1	13.7	14.8		
Brown Swiss	10.0	10.1	10.7	11.0		
Rolling Herd Average	20 425	16 159	14 332	13 894		
Peak Milk Vield 1st	66.8	56.5	51.3	50.8		
Peak Milk Yield 2nd	86.4	75.1	61.6	67.3		
Peak Milk Yield 3rd	92.8	80.1	69.5	73.5		
Peak Milk Yield Avg.	82.4	70.6	63.3	63.8		
Income/Feed Cost	1.484	1.274	1.078	879		
SCC Average	308	297	293	324		
Days to 1st Service	83	87	71	47		
Days Open	153	143	185	138		
Projected Calving Interval	14.2	13.9	15.3	13.7		
II-letetu						
Rolling Hand Avenage	99 201	10 467	17 407	1/910		
Rolling Held Average	22,301	19,407	17,407	14,310		
Peak Milk Yield Ist	78.0	70.0	04.0 70 /	00.8 66 5		
Peak Wilk Held 2nd	97.4	07.1	/0.4 04.0	79.4		
Peak Milk Yield Avg	104.5	93.4	84.0 75.7	66.2		
Feak Milk Held Avg.	92.0	04.9	1.007	00.2		
SCC Avorage	1,723	1,403	1,237	959		
Days to 1st Service	92.9 90	80	002 Q1	400		
Days to 1st Service	157	164	166	170		
Days Open Projected Calving Interval	14.4	146	14.6	15.1		
	14.4	14.0	14.0	15.1		
Jersey	40.000	10.001		0 700		
Rolling Herd Average	16,370	13,804	12,161	9,792		
Peak Milk Yield 1st	55.7	49.0	47.5	40.0		
Peak Milk Yield 2nd	69.1	59.9	55.4	46.7		
Peak Milk Yield 3rd	74.6	63.7	58.6	50.3		
Peak Milk Yield Avg.	67.6	58.0	54.9	46.0		
Income/Feed Cost	1,499	1,136	939	661		
SUC Average	321	284	287	396		
Days to 1st Service	68	82	84	67		
Days Open	124	132	140	169		
Projected Calving Interval	13.3	13.5	13.8	14.8		
Nilking Shorthorn	14715	10.000	10.000	11 000		
Rolling Herd Average	14,/15	13,623	13,099	11,283		
Peak Milk Yield 1st	55.0	53.0	47.0	51.0		
Peak Wilk Yield 2nd	00.0	30.0	00.0	38.5		
Peak Wilk Yield 3rd	/8.0	/4.0	58.0	60.0		
Peak Milk field Avg.	07.0	04.0	58.0	30.5		
Income/Feed Cost	1,360	1,257	954	843		
SUC Average	382	309	317	10		
Days to 1st Service	8U	δI 115	91	10		
Days Open Designed Column Later 1	107	110	109	198		
Projected Calving Interval	12.7	13.0	14.4	15.7		

Hay Prices–Oklahoma

Location	Quality	Price (\$/ton)
Central/Western, OK	Premium	100-120
Central/Western, OK	Good	80-100
Panhandle, OK	Premium	100-120
Panhandle, OK	Good	80-100
	Location Central/Western, OK Central/Western, OK Panhandle, OK Panhandle, OK	LocationQualityCentral/Western, OKPremiumCentral/Western, OKGoodPanhandle, OKPremiumPanhandle, OKGood

Source: Oklahoma Department of Agriculture, August 27, 1998

Producers can reduce mycotoxins after grain harvest with these simple procedures:

- 1. Harvest when moisture content allows minimum grain damage (24 to 26 percent).
- 2. Adjust equipment for minimum kernel damage and maximum cleaning.
- 3. Dry shelled grain to at least 15 percent moisture, 24 to 48 hours after harvest.
- 4. Dry grain to below 13 percent moisture for long-term storage.
- 5. Cool the grain after drying to 35 to 40° F.
- 6. Aerate and test for "hot spots" at one- to four-week intervals during the storage period.

There are some registered products (organic acids) that help reduce mold growth in stored grain. They do not remove existing molds; they only prevent further growth, if properly used. Grain that is treated with an organic acid can only be used as livestock and poultry feed.

Producers in need of ear mold identification can submit samples to the K-State Plant Disease Diagnostic Clinic in Manhattan through their local county research and extension office. The Kansas Department of Agriculture Grain Inspection Lab in Topeka (785-296-3786) or private laboratories can be contacted for information on how to submit samples and the cost of mycotoxin testing.

Thank You to Dick Dunham for 29 Years of Service

James Richard (Dick) Dunham was born November 25, 1937, at Walnut, Kansas. He grew up in the dairy business and entered Kansas State University as a freshman in Dairy Science in 1955. He returned to the family dairy farm in 1959 after completing requirements for a B.S. degree in Dairy Science. He returned to Kansas State University in 1964, received a Master of Science degree in 1967 and a Ph.D. in Animal Nutrition in 1969. He served one year as Dairy Extension Specialist at Iowa State University before returning to Kansas in 1969 where he has served as a Dairy Extension Specialist for 29 years. Dick has been extremely active in his service to the Kansas dairy industry and an integral part of the Dairy Herd Improvement Association team. He has published numerous refereed journal articles, dairy day reports, extension bulletins, popular press articles and developed 11 computer software programs. Five of his software programs are included in the CD-ROM National Dairy Database. His active participation at the state fair, dairy shows, breed association meetings, and other dairy events have endeared him to dairy producers throughout the state. His advice and counsel on nutrition and management problems was constantly in demand. Dick willingly gave of his time; day, night and weekends. His service to Kansas and the Nation, and his dedication to the dairy industry have earned him numerous honors and awards throughout his career.

Dick received the Epsilon Sigma Phi-Alpha Gamma Rho meritorious service award, Kansas Junior Dairy Show award of appreciation, Friend of County Agents award, Kansas Dairy Leader award, Kansas 4-H Clover award, Kansas Dairy Fieldman's award, Gamma Sigma Delta Excellence in Extension award, and was presented with Honorary Lifetime membership in the K-State Dairy Science Club and Kansas Holstein Association.

1998 Dairy Day Program

Dedicated to Dr. J. R. (Dick) Dunham

Dairy Cows'–Jeff Stevenson, Animal Sciences, KSU 11:15 a.m. 'Designing/Sizing of Cooling Systems for Dairy Cows' Joe Harner, Biological/ Agricultural Engineering, KSU NOON Lunch–Sponsored by the Kansas Dairy Association (KDA) 1:00 p.m. 'What We Learned About Cooling Cows in Kansas'-John Smith, Animal Sciences, KSU 1:45 p.m. 'Milk Urea Nitrogen (MUN): A Management Tool'–John Shirley, Animal Sciences, KSU

Registration

'How to Program A.I.-Breed Your

Welcome

2:30 p.m. Adjourn

PROGRAM 10:00 a.m.

10:25 a.m.

10:30 a.m.

In order to plan for food, we need your reservation by November 6. Please clip and return the reservation slip or call one of the following K-State Research and Extension Offices:

David Key

Nemaha County Agent 604 Nemaha, Ste. 201 Seneca, KS 66538 785-336-2184

Greg McCormack Reno County Agent 2 W. 10th South Hutchinson, KS 67505 316-662-2371

Darren Hibdon

Franklin County Agent 1418 S. Main, Suite 2 Ottawa, KS 66067 785-229-3520

Clip and send to one of the addresses to the left.

Please reserve (No.) ____ meals for the Area DHIA Meeting.

Name:

Hay	Prices*-Kansas		
	Location	Quality	Price (\$/ton)
Alfalfa	Southwestern Kansas	Premium	75-85
Alfalfa	Southwestern Kansas	Good	60-75
Alfalfa	South Central Kansas	Premium	70-95
Alfalfa	South Central Kansas	Good	70-75
Alfalfa	Southeastern Kansas	Premium	85-100
Alfalfa	Southeastern Kansas	Good	75-85
Alfalfa	Northwestern Kansas	Premium	85-90
Alfalfa	Northwestern Kansas	Good	80
Alfalfa	North Central Kansas	Premium	85-95
Alfalfa	North Central Kansas	Good	80-85

Source: USDA Weekly Hay Report, *Week ending September 1, 1998* *Premium Hay RFV = 170–200 Good Hay RFV = 150–170

Feed Stuffs Prices				
	Location	Price (\$/ton)		
SBM 48%	Kansas City	147.20-155.20		
Cotton Seed Meal	Kansas City	139–143		
Whole Cottonseed	Memphis	145		
Blood Meal	Central United States	350-355		
Corn Hominy	Kansas City	65-68		
Corn Gluten Feed	Kansas City	55-60		
Corn Gluten Meal 60%	Kansas City	235-240		
Distillers Dried Grain	Central Illinois	80-82		
Brewers Dried Grain	St. Louis	NA		
Wheat Middlings	Kansas City	38-41		

Source: USDA Weekly Feed Stuffs Report, Week ending August 26, 1998

Department of Animal Sciences and Industry 139 Call Hall Manhattan, KS 66506

Dairy Lines is jointly published for dairy producers by the Department of Animal Sciences and Industry, K-State Research and Extension, and the Department of Animal Science, Oklahoma Cooperative Extension Service.

For more information or questions, please contact 913.532.5654 (K-State) or 405.744.6058 (OSU).

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquiries from other individuals, associations and firms that may be interested in cosponsoring this publication.

Kansas State University **Cooperative Extension Service** Department of Animal Sciences and Industry Call Hall, Room 139 Kansas State University Manhattan, Kansas 66506

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, religion, national origin, sex, age, or disability.

Dairy Lines

John Smith Extension Specialist, Dairy Science K-State

Dan

Dan Waldner Extension Specialist, Dairy Science Oklahoma State

DAIRY RESEARCH AND EXTENSION NEWS K-State Research and Extension and Oklahoma State University