November/December 1999

Dairy Lines Resident

Volume 5, Number 11

Co-Editors

John F. Smith
Extension Specialist, Dairy Science

Dan Waldner
Extension Specialist, Dairy Science

Mike Brouk

Extension Specialist, Dairy Science

Contributors

Karen Schmidt
Associate Professor, Dairy Products

John Shirley

Associate Professor, Dairy Science

Jeff Stevenson

Professor, Dairy Science

Dave Sukup

Manager, Heart of America DHI

Upcoming Events

OK Breed Association Annual Meetings

Nov. 13—Jersey, Cushing Dec. 09—Holstein, OKC Dec. 11—Guernsey, Cushing Jan. 08—Brown Swiss, Stillwater Jan. 15—Milking Shorthorn, OKC Jan. 17—PDCA Annual Mtg, Stillwater

K-State Research and Extension 1999 Dairy Day

November 17—Whiteside, KS November 18—Hillsboro, KS November 19—Seneca, KS

Printing sponsored by

MONSANTO

Food · Health · Hope™

DAIRY RESEARCH & EXTENSION NEWS

http://www.oznet.ksu.edu/dp_ansi/dairylin.htm

Sizing the Milk Parlor

J.F. Smith, M.J. Brouk and J.P. Harner III

Performance of milking parlors has been evaluated by time and motion studies to measure steady state throughput (cows per hour). Steady-state throughput does not include time for cleaning the milking system, maintenance of equipment, effects of group changing, and milking the hospital string. These studies also allow us to look at the effect of different management variables, including milking interval, detachers, premilking hygiene, number of operators and construction. Examples of different management techniques that affect parlor performance are listed below:

- Data collected in parallel milking parlors indicates that milking cows 3× per day, versus 2× per day, increases throughput 8 to 10 percent.
- The use of detachers does not increase throughput with the same number of operators.
- The use of pre-dip milking hygiene reduces parlor performance 15 to 20 percent.
- The average number of cows milked per operator hour decreases as the number of operators increases from one to four.
- Steady-state throughput is 10 to 12 percent higher in new parlors than in renovated parlors.

Sizing Parallel and Herringbone Milking Parlors

Typically milking parlors are sized so that cows can be milked once in 8 hours when milking 2× per day; 6.5 hours when milking 3× per day; and 5 hours when milking 4× per day. Using these criteria, the milking parlor will be sized to accommodate the cleaning and maintenance of the parlor. In smaller dairies or diverse operations, the parlor may be sized to milk in a fixed number of hours. We also want to milk one group in 60 minutes when milking 2×, 45 minutes when milking 3×, and 30 minutes when milking 4×. Group size should be divisible by the number of stalls on one side of the milking parlor. Having as many occupied stalls as possible per cycle maximizes parlor efficiency. Typically, when sizing the milking parlor it should be assumed that the parlor could be turned over four and onehalf times per hour. The number of cows that will be milked per hour can be calculated using the following formula:

Total # of stalls × 4.5 = cows milked per hour (CPH)

Of milking cows = CPH × shift length (hours)

Sizing Rotary Parlors

Rotation time or entry time (seconds/stall), number of empty stalls, number of cows which go around a second time, entry and exit stops and the size of the parlor (number of stalls) influence the performance of rotary parlors. The rotation time will determine the maximum number of cows that can be milked per hour. For example if the rotation time is 10 seconds, the maximum throughput will be 360 cows per hour (3600 seconds per hour / 10 seconds per stall = 360 cows per hour). This is referred to as theoretical throughput.

Theoretical throughput assumes that the parlor never stops and that a new cow at entry occupies every stall. In reality, there are empty stalls, cows that go around a second time and times when the parlor is stopped. In Table 1, rotary parlor performance at different theoretical percentages is presented. As the number of empty stalls, cows making a second trip around, and number of stops increases the percent of theoretical throughput is decreased.

If we look at data collected on 14 dairies, which recently constructed new rotary parlors, the average rotation time averaged 11:45 seconds and the percent of theoretical throughput averaged 79%. The number of stalls or size of the rotary parlor will affect the available unit on time. Table 3 lists available unit on time for different sizes of rotary parlors at different rotation times. A rotary parlor must be large enough to allow approximately 90% of the cows to be milked out in one trip around the parlor.

In reviewing the data available today, rotary parlor should be sized at a 10–12 sec/stall rotation and 80% of theoretical throughput. The parlor should be large enough to allow 9 minutes of available unit on time.

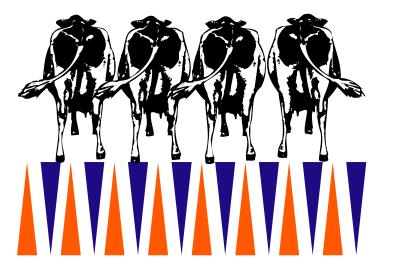

		Qua	rtiles		You
	1	2	3	4	Hero
Ayrshire					
Rolling Herd Average	13,099	16,753	13,792	9,532	
Summit Milk Yield 1st	50.5	62.0	48.5	39.0	
Summit Milk Yield 2nd	46.5	73.5	58.0	31.6	
Summit Milk Yield 3rd Summit Milk Yield Avg.	32.0 48.5	77.5 72.0	61.0 55.5	48.6 46.3	
Income/Feed Cost	878	1,581	1,211	661	
SCC Average	221	256	280	227	
Days to 1st Service	57	81	84	67.3	
Days Open	170	144	128	173	
Projected Calving Interval	14.8	13.9	13.4	14.9	
Brown Swiss					
Rolling Herd Average	14,981	17,794	15,927	12,822	
Summit Milk Yield 1st Summit Milk Yield 2nd	54.0 62.2	55.2 72.0	49.6 49.6	46.3 57.1	
Summit Milk Yield 3rd	69.0	77.8	68.0	52.3	
Summit Milk Yield Avg.	63.8	68.0	60.4	54.8	
Income/Feed Cost	1,635	1,716	1,546	1,252	
SCC Average	272	313	438	356	
Days to 1st Service	88	76	70	86	
Days Open	158	180	164	194	
Projected Calving Interval	14.4	15.1	14.6	15.6	
Guernsey	40.700	47.000	44.470	44 440	
Rolling Herd Average	13,739	15,386	14,479	11,418	
Summit Milk Yield 1st Summit Milk Yield 2nd	51.5 60.0	51.5 63.5	47.5 60.5	43.0 59.0	
Summit Milk Yield 3rd	63.0	71.0	68.0	61.5	
Summit Milk Yield Avg.	58.0	63.0	60.0	54.0	
Income/Feed Cost	1,491	1,789	870	1,223	
SCC Average	348	185	253	289	
Days to 1st Service	69	91	106	81	
Days Open	153	147	161	199	
Projected Calving Interval	14.2	14.1	14.5	15.8	
Holstein	17 007	00.000	10.000	14 107	
Rolling Herd Average Summit Milk Yield 1st	17,637	22,669 72.1	19,662 64.8	14,195	
Summit Milk Yield 2nd	59.7 73.4	91.2	82.3	50.5 61.3	
Summit Milk Yield 3rd	79.1	95.9	86.9	67.4	
Summit Milk Yield Avg.	70.9	85.4	77.4	61.2	
Income/Feed Cost	1,601	2,204	1,817	1,239	
SCC Average	405	324	386	521	
Days to 1st Service	87	88	90	83	
Days Open Projected Calving Interval	181 15.1	166 14.6	169	200 15.7	
	13.1	14.0	14.7	13.7	
ersey Rolling Herd Average	13,093	16,777	14,209	10,828	
Summit Milk Yield 1st	49.5	46.7	45.3	37.8	
Summit Milk Yield 2nd	47.4	63.4	55.8	45.3	
Summit Milk Yield 3rd	52.8	71.7	63.6	47.4	
Summit Milk Yield Avg.	54.7	64.0	55.6	43.8	
Income/Feed Cost	1,403	1,850	1,654	1,000	
SCC Average	328	284	298	448	
Days to 1st Service	91	71	80	60	
Days Open Projected Calving Interval	139 13.7	138 13.7	137 13.7	139 13.7	
Milking Shorthorn	10.7	10.7	10.7	10.7	
Rolling Herd Average	12,999	15,152	13,659	11,948	
Summit Milk Yield 1st	52.0	52.0	50.0	42.5	
Summit Milk Yield 2nd	66.0	51.0	63.0	50.5	
Summit Milk Yield 3rd	72.0	67.0	72.5	61.5	
Summit Milk Yield Avg.	63.0	58.0	62.0	52.0	
Income/Feed Cost	1,517		1,581	1,010	
SCC Average	209	136	326	386	
Days to 1st Service	335	93	76	83	
Days Open	335 20.2	131 13.5	113 12.9	141 13.8	

Table 1. Rotary Parlor Performance (Cows per hour)					
	Theoretical cows/hr				
Rotation Time (sec/stall)	100%	90%	80%	70%	60%
8	450	405	360	315	270
9	400	360	320	280	240
10	360	324	288	252	216
11	327	295	262	229	196
12	300	270	240	210	180
13	277	249	222	194	166
14	257	231	206	180	154
15	240	216	192	168	144
16	225	203	180	158	135

Table 3. Available Unit On Time Calculated for Rotary Parlors at Different Rotation Times*					
		Revolution Time		Available Unit on Time	
# of Stalls	Rotation time sec/ stall	Seconds/ Revolution	Minutes/ Revolution	Seconds/ Revolution	Minutes/ Revolution
40	8	320	5:20	240	4:00
	10	400	6:40	300	5:00
	12	480	8:00	360	6:00
60	8	480	8:00	400	6:40
	10	600	10:00	500	8:20
	12	720	12:00	600	10:00
72	8	576	9:22	496	8:16
	10	720	12:00	620	10:20
	12	864	14:24	744	12:24
80	8	640	10:40	560	9:20
	10	800	13:20	700	11:40
	12	960	16:00	840	14:00

^{*} Assumes 5 stalls for entry and exit, 3 stalls for pre-milking hygiene, 2 stalls to detach and post dip.

Sizing the milking parlor correctly will ensure that you can meet your goals now and in the future.

District DHIA Meeting

January 20 Valentino's Restaurant SENECA January 21
Gerrards
West 54 Hwy
GODDARD

January 26
Amish Community
Building
WHITESIDE

January 27
Extension Office

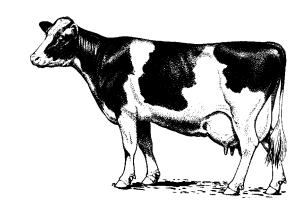
OTTAWA

Clip and send to one of the addresses to the right.

Please reserve (No.) ____ meals for the District DHIA Meeting.

Name: _

Dairy Lines


To plan for meals, please make your reservation by **January 15**. Please clip and return the reservation slip or call one of the following K-State Research and Extension Offices:

Darren Hibdon (Ottawa) Franklin County Agent 1418 S. Main, Suite 2 Ottawa, KS 66067 785-229-3520

Dave Sukup (Goddard) Heart of America DHIA 628 Pottawatomie Manhattan, KS 66502 785-539-1784 David Key (Seneca) Nemaha County Agent 604 Nemaha, Ste. 201 Seneca, KS 66538 785-336-2184

Greg McCormack (Whiteside) Reno County Agent 2 W. 10th South Hutchinson, KS 67505

316-662-2371

Hay Prices*—Kansas				
	Location	Quality	Price (\$/ton)	
Alfalfa	Southwestern Kansas	Supreme	95-125	
Alfalfa	Southwestern Kansas	Premium	65-90	
Alfalfa	Southwestern Kansas	Good	_	
Alfalfa	South Central Kansas	Supreme	95-120	
Alfalfa	South Central Kansas	Premium	75–90	
Alfalfa	South Central Kansas	Good	65-75	
Alfalfa	Southeastern Kansas	Supreme	90-95	
Alfalfa	Southeastern Kansas	Premium	80-90	
Alfalfa	Southeastern Kansas	Good	65-75	
Alfalfa	Northwestern Kansas	Supreme	50 cents/pt RFV	
Alfalfa	Northwestern Kansas	Premium	80-90	
Alfalfa	Northwestern Kansas	Good	50-70	
Alfalfa	North Central Kansas	Supreme	50 cents/pt RFV	
Alfalfa	North Central Kansas	Premium	75–100	
Alfalfa	North Central Kansas	Good	50-70	

Supreme = over 180 RFV (less than 27 ADF) Premium = 150–180 RFV (27–30 ADF) Good = 125–150 RFV (30–32 ADF)

Source: USDA Kansas Hay Market Report, October 26, 1999

Hay Prices—Oklahoma					
	Location	Quality	Price (\$/ton)		
Alfalfa	Central/Western, OK	Premium	80-100		
Alfalfa	Central/Western, OK	Good	75–85		
Alfalfa	Panhandle, OK	Premium	80-90		
Alfalfa	Panhandle, OK	Good	70–80		

Source: Oklahoma Department of Agriculture, October, 1999

Feed Stuffs Prices		
	Location	Price (\$/ton)
Blood Meal	Texas Panhandle	_
Corn Gluten Feed	Kansas City	61-65
Corn Gluten Meal	Kansas City	260-270
Corn Hominy	Kansas City	60
Cotton Seed Meal	Kansas City	130-132
Whole Cotton Seed	Memphis	95
Distillers Grains	Central Illinois	80-85
Pork—Meat and Bone Meal	Texas Panhandle	_
SBM 48%	Kansas City	145-155
Wheat Middlings	Kansas City	48-51

Source: USDA Feedstuff Market Review, October 27, 1999

COOPERATIVE EXTENSION SERVICE U.S. DEPARTMENT OF AGRICULTURE KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

Dairy Lines is jointly published for dairy producers by the Department of Animal Sciences and Industry, K-State Research and Extension, and the Department of Animal Science, Oklahoma Cooperative Extension Service.

For more information or questions, please contact 785.532.5654 (K-State) or 405.744.6058 (OSU).

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines

Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquiries from other individuals,

associations and firms that may be interested in cosponsoring this publication.

Kansas State University

K-State Research & Extension

Department of Animal Sciences and Industry Call Hall, Room 139 Kansas State University Manhattan, Kansas 66506

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, religion, national origin, sex, age, or disability.

John Smith
Extension Specialist
Dairy Science
K-State

Mike Brouk
Extension Specialist
Dairy Science
K-State

Dan Waldner

Dan Waldner
Extension Specialist
Dairy Science
Oklahoma State

DAIRY RESEARCH AND EXTENSION NEWS K-State Research and Extension and Oklahoma State University