December 1995

Volume 1, Number 1

#### **Co-Editors**

James R. Dunham Extension Specialist, Dairy Science John F. Smith Extension Specialist, Dairy Science

#### Contributors

Karen Schmidt Associate Professor, Dairy Products John Shirley Associate Professor, Dairy Science

Jeff Stevenson Professor, Dairy Science Dave Sukup Manager, Heart of America DHI



### **Upcoming Events**

Dairy Herd Health Meetings 10 a.m.-2:30 p.m. Jan. 15 Amish Community Bldg. Hutchinson, KS Jan. 16 Valentino's Seneca, KS Jan. 17 Franklin Co. Ext. Off. Ottawa, KS

Area DHIA Meetings 10:00 a.m.–3:00 p.m. Feb. 1–2, 5–8 Look on page 4 for details.



## The Nutrition Program Managing Feed Costs

#### by J.R. Dunham

Selecting ration ingredients is an important step in managing feed costs. With higher than normal ingredient prices, this year is a good time to evaluate the potential for including byproducts in the feeding program. Feeding less feed or lower quality forages is usually not a good choice to improve profitability.

Each issue of Dairy Lines will list the market prices of certain by-products that may lower feed costs while maintaining production. These prices are shown inside this issue. Check with local suppliers for the availability and local prices. Also, work with your nutritionist to determine how certain byproducts may be included in the feeding program.

**KANSAS DAIRY EXTENSION NEWS** 

Dairy Lines will also list the market prices for alfalfa hay at different localities in Kansas. Although high quality alfalfa hay seems expensive, there is no substitute for quality forages in a feeding program.

Total dry matter intake is a the most limiting factor in many dairy feeding programs. Since forage quality has the greatest effect on rate of passage of feeds *continued on page 3*< "Feed costs may be reduced by selecting by-products. Feed costs should be reduced by selecting lower cost ingredients rather than feeding less." —J.R. Dunham

## The Reproduction Program Seasonal Fluctuations in Conception

by J.S. Stevenson and J.F. Smith

Questions about seasonal fluctuations in conception rate are often asked. Many have experienced lower conception rates in the lactating cow herd during this past summer and early fall of 1995. We have monitored this seasonal pattern in our 200-cow herd at K-State since June, 1983. Figure 1 illustrates the monthly conception rate for lactating cows combined with that of replacement heifers during the 12-year period in comparison to that observed for 1995. Typically, conception rates are lowest in July, August and September. The best conception

rates have been obtained in March and April.

This year's fertility is following very closely what has occurred in 12 previous years in



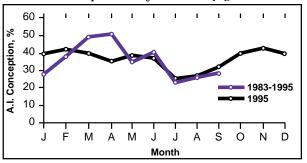



Figure 1.

Monthly conception rates during 12 years (1983-1995) compared with 1995 at the K-State Dairy Teaching and Research Center (Holsteins).

|                                  | Quartiles    |              |              |            |                |
|----------------------------------|--------------|--------------|--------------|------------|----------------|
|                                  | 1            | 2            | 3            | 4          | - Your<br>Herd |
| Aryshire                         |              |              |              |            |                |
| Rolling Herd Average             | 16,810       | 14,446       | 13,554       | 12,066     |                |
| Summit Milk Yield 1st            | 55.2         | 51.7         | 49.4         | 48.1       |                |
| Summit Milk Yield 2nd            | 69.9         | 64.6         | 62.4         | 56.7       |                |
| Summit Milk Yield 3rd            | 76.7         | 68.9         | 64.0         | 58.4       |                |
| Summit Milk Yield Avg.           | 65.6         | 62.2         | 58.6         | 54.9       |                |
| Income/Feed Cost                 | 1,062        | 828          | 809          | 826        |                |
| SCC 1st LACT                     | 181          | 158          | 205          | 266        |                |
| SCC 2nd LACT                     | 231          | 153          | 281          | 201        |                |
| SCC 3rd+ LACT                    | 359          | 282          | 361          | 458        |                |
| SCC Average                      | 262          | 211          | 292          | 334        |                |
| Days to 1st Service              | 85           | 90           | 85           | 84         |                |
| Days Open                        | 112          | 128          | 124          | 126        |                |
| Projected Calving Interval       | 394          | 410          | 406          | 408        |                |
| •                                | 554          | 410          | 400          | 400        |                |
| Brown Swiss                      |              |              | 10.0         | 44.0       |                |
| Rolling Herd Average             | 18,299       | 15,405       | 13,806       | 11,969     |                |
| Summit Milk Yield 1st            | 57.4         | 50.7         | 45.6         | 38.9       |                |
| Summit Milk Yield 2nd            | 72.3         | 65.6         | 60.1         | 51.3       |                |
| Summit Milk Yield 3rd            | 79.5         | 72.1         | 64.9         | 52.2       |                |
| Summit Milk Yield Avg.           | 69.7         | 64.2         | 57.1         | 48.4       |                |
| Income/Feed Cost                 | 1,360        | 1,047        | 933          | 889        |                |
| SCC 1st LACT                     | 193          | 160          | 152          | 208        |                |
| SCC 2nd LACT                     | 314          | 238          | 314          | 211        |                |
| SCC 3rd+ LACT                    | 373          | 441          | 507          | 576        |                |
| SCC Average                      | 303          | 318          | 348          | 415        |                |
| Days to 1st Service              | 86           | 89           | 90           | 113        |                |
| Days Open                        | 134          | 131          | 150          | 142        |                |
| Projected Calving Interval       | 422          | 419          | 438          | 430        |                |
| Holstein                         |              |              |              |            |                |
| Rolling Herd Average             | 21,207       | 18,478       | 16,594       | 13,667     |                |
| Summit Milk Yield 1st            | 67.6         | 61.0         | 55.4         | 48.6       |                |
| Summit Milk Yield 2nd            | 85.8         | 77.0         | 69.3         | 58.9       |                |
| Summit Milk Yield 3rd            | 90.6         | 81.3         | 74.3         | 63.3       |                |
| Summit Milk Yield Avg.           | 79.9         | 72.6         | 66.1         | 57.6       |                |
| 8                                |              |              |              |            |                |
| Income/Feed Cost<br>SCC 1st LACT | 1,453<br>195 | 1,217<br>219 | 1,076<br>237 | 860<br>261 |                |
|                                  |              |              |              |            |                |
| SCC 2nd LACT                     | 241          | 262          | 284          | 334        |                |
| SCC 3rd+ LACT                    | 397          | 391          | 426          | 533        |                |
| SCC Average                      | 278          | 298          | 330          | 403        |                |
| Days to 1st Service              | 87           | 88           | 91           | 92         |                |
| Days Open                        | 137          | 134          | 131          | 132        |                |
| Projected Calving Interval       | 417          | 414          | 411          | 410        |                |
| ersey                            |              |              |              |            |                |
| Rolling Herd Average             | 15,242       | 12,148       | 11,735       | 9,887      |                |
| Summit Milk Yield 1st            | 41.9         | 45.1         | 40.6         | 35.6       |                |
| Summit Milk Yield 2nd            | 58.7         | 53.1         | 49.2         | 42.5       |                |
| Summit Milk Yield 3rd            | 64.8         | 56.9         | 53.0         | 45.2       |                |
| Summit Milk Yield Avg.           | 57.4         | 52.4         | 48.0         | 42.0       |                |
| Income/Feed Cost                 | 1,316        | 1,018        | 839          | 715        |                |
| SCC 1st LACT                     | 183          | 287          | 210          | 207        |                |
|                                  | 215          | 298          | 256          | 259        |                |
| SCC 2nd LACT                     | 210          |              |              |            |                |
| SCC 2nd LACT<br>SCC 3rd+ LACT    |              |              | 425          | 464        |                |
| SCC 3rd+ LACT                    | 378          | 458          | 425<br>316   | 464<br>343 |                |
| SCC 3rd+ LACT<br>SCC Average     | 378<br>273   | 458<br>367   | 316          | 343        |                |
| SCC 3rd+ LACT                    | 378          | 458          |              |            |                |

## **Comments on Dairy Records**

#### by J.R. Dunham

Dairy Lines will list Heart of America DHIA summaries each issue. The summary will show the breed quartile averages for some of the important data. Each herd is encouraged to compare their averages with the quartile averages.

Summit Milk Yield (SMY) is one of the important indicators of why a Rolling Herd Average (RHA) is high or low. SMY is the average of the highest two of the first three DHIA milk weights for each lactation. It is the best estimate of the peak of the lactation curve. Since high lactation yields can not be obtained without high peaks in the lactation curve, it follows that the RHA can not be high without high SMY.

Dry cow feeding and management programs plus early lactation feeding have the greatest effect on SMY. Everyone's goal should be to have SMYs equal to or greater than the second quartile average for their breed.

Fluctuations in Conception, continued from page 1 the K-State herd. Results for the October inseminations will not be available until after this article goes to press. However, it appears that conception rates are running consistent with previous years. Most in Kansas experienced very high temperatures during July and early August. In Manhattan, we had two to three weeks of daily high temperatures above 100°F. Conception rates during that period are already included in the data for 1995. However, lingering effects of heat stress may yet be manifested in the conception rates for October and November when pregnancy checks are completed in December and early January.

Lactating cows are more susceptible to the effects of heat stress on fertility than non-lactating replacement heifers. Research shows very little effect of heat stress on conception rate in heifers inseminated throughout the summer in many parts of the world. However, heat stress affects pregnant cows. Perhaps you have noticed smaller birth weights of calves born this fall. Heat stress will always reduce late gestational fetal growth and overall birth weights. There are no secrets to solving the problem of poor reproductive efficiency during heat stress, we simply have to look at ways to modify the environment to make cows more comfortable. Now is the time to plan for next summer. Producers may want to evaluate adding cooling systems in the holding pens and free stalls to reduce heat stress. Hopefully, planning ahead for next summer will increase conception rates on your dairy. Happy A.I. Breeding!

### Using Prostaglandin Versus Rectal Palpation as a Reproductive Management Tool

#### by John F. Smith

Recently, a field trial was conducted in New York on 1,624 cows in three commercial dairies to evaluate the effect of reproductive management programs on reproductive performance and economic benefit. Dairy cows were randomly assigned to one of three treatments: (1) rectal palpation at 30 and 50 days post-partum, (2) a single prostaglandin injection 25 to 30 days post-partum, and (3) a prostaglandin injection at day 25 to 30 days post-partum and a second injection at 39 to 46 days

post-partum. Cows in all treatments were given an injection of prostaglandin at the beginning of the breeding period (53 to 60 days post-partum) to ensure all animals were exposed to the same length breeding period.

Dairy cows which were palpated (treatment 1) and cows receiving one injection of prostaglandin (treatment 2) had similar reproductive performance. Cows receiving two injections of prostaglandin (treatment 3) had a 10 percent higher pregnancy rate than cows that were palpated (treatment 1). This is probably due to greater synchronization of estrus which resulted in improved heat detection. An economic analysis indicated that the prostaglandin programs (treatments 2 and 3) were less expensive than the rectal palpation program. The results on this study indicate that a prostaglandin program may be cost effective and may improve reproductive performance compared with more traditional programs using rectal palpation.

Summarized from Journal of Dairy Science, Vol. 78, No. 7, pg. 1477-1488.

#### Managing Feed Costs, continued from page 1

through the digestive system, high quality forages should be selected to maximize dry matter intake. Alfalfa hay with at least a 140 Relative Feed Value should be selected for high producing dairy cows.

| Hay Prices* |                      |         |                |  |  |  |
|-------------|----------------------|---------|----------------|--|--|--|
|             | Location             | Quality | Price (\$/ton) |  |  |  |
| Alfalfa     | Southwestern Kansas  | Premium | 90-95          |  |  |  |
| Alfalfa     | Southwestern Kansas  | Good    | 85-90          |  |  |  |
| Alfalfa     | South Central Kansas | Premium | 90-100         |  |  |  |
| Alfalfa     | South Central Kansas | Good    | 80-90          |  |  |  |
| Alfalfa     | Southeastern Kansas  | Premium | 90-95          |  |  |  |
| Alfalfa     | Southeastern Kansas  | Good    | 80-90          |  |  |  |
| Alfalfa     | Northwestern Kansas  | Premium | 90-100         |  |  |  |
| Alfalfa     | Northwestern Kansas  | Good    | 80-90          |  |  |  |
| Alfalfa     | North Central Kansas | Premium | 90-100         |  |  |  |
| Alfalfa     | North Central Kansas | Good    | 80-90          |  |  |  |

**Source:** USDA Weekly Hay Report, *Week ending 8 December 1995* \*Premium Hay RFV = 170-200

Good Hay RFV = 150-170

Essel Chuffe Duis

|                        | Location                     | Price (\$/ton) |
|------------------------|------------------------------|----------------|
| SBM 48%                | Kansas City                  | 214.10-215.10  |
| Cotton Seed Meal       | Kansas City                  | 189            |
| Whole Cottonseed       | Memphis                      | 150-160        |
| Meat and Bone Meal     | <b>Central United States</b> | 210-215        |
| Blood Meal             | Central United States        | 405            |
| Corn Hominy            | Kansas City                  | 120-125        |
| Corn Gluten Feed       | Kansas City                  | 120-125        |
| Corn Gluten Meal 60%   | Kansas City                  | 330-335        |
| Distillers Dried Grain | Central Illinois             | 135-145        |
| Brewers Dried Grain    | St. Louis                    | 126            |
| Wheat Middlings        | Kansas City                  | 117-120        |

Source: USDA Weekly Feed Stuffs Report, Week ending 8 December 1995

# Milk Quality... What is Tritatable Acidity?

#### by Karen Schmidt

One of the screening tests commonly used to evaluate milk quality at the receiving plant is titratable acidity. Titratable acidity, commonly expressed as percent lactic acid, is used to assess milk quality. Fresh milk should not contain significant levels of lactic acid; however, when sodium hydroxide is added to milk, it will react and an acid reaction will occur. This acid unit is known as titratable acidity. (Generally, the acid reaction occurs when a base neutralizes acids.)

If there isn't any lactic acid in the milk, what causes the acid reaction? Fresh milk contains a variety of components that influence and cause the acid reaction. Some of these components include carbon dioxide (which will form carbonic acid), proteins (can react as acid or bases), phosphates and citrates. Each of these components contributes to the titratable acidity value of fresh milk. As expected, their contribution is related to their quantity.

Based on compositional analyses, fresh milk should contain sufficient acid-reacting components to produce a titratable acidity value of .15 to .17% (expressed as lactic acid). These values reflect the **apparent acidity**.

**Developed acidity** occurs when lactic acid bacteria ferment lactose. The assumption behind the use of titratable acidity as a milk quality assessment tool, relies on the fact that milk composition is fairly stable. Hence, if unwanted microbial growth occurs, titratable acidity values should be greater than .17 percent, reflecting the production of lactic acid from lactose. This can occur when milk is not properly cooled. COOPERATIVE EXTENSION SERVICE U.S. DEPARTMENT OF AGRICULTURE KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

# **Area DHIA Meetings**

10 a.m.–3 p.m.

February 1—Hays, Holiday Inn

February 2—Hutchinson, Amish Community Building

February 5—Wichita, 4–H Building

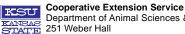
February 6—Seneca, Valentino's

February 7—Salina, 4–H Building

February 8—Ottawa, Extension Office

CRRR

Dairy Lines is published for dairy producers by the Department of Animal Sciences and Industry, Cooperative Extension Service, Kansas State University.


For more information or questions, please contact Extension Animal Sciences and Industry at (913) 532-5654.

**Dick Dunham** Extension Specialist, Dairy Science

John Smith

Extension Specialist, **Dairy Science** The Department of Animal Sciences and Industry at Kansas State

University greatly appreciates the sponsor(s) of the DairyLines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquires from other individuals, associations and firms that may be interested in cosponsoring this publication.



Department of Animal Sciences & Industry STATE 251 Weber Hall Manhattan, Kansas 66506

KANSAS DAIRY EXTENSION NEWS

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, national origin, sex, age, or disability.