December 1998

Volume 4, Number 12

Co-Editors

John F. Smith Extension Specialist, Dairy Science Dan Waldner Extension Specialist, Dairy Science

Contributors Karen Schmidt Associate Professor, Dairy Products John Shirley Associate Professor, Dairy Science

Jeff Stevenson Professor, Dairy Science

Dave Sukup Manager, Heart of America DHI

Upcoming Events

January 9—10 am Brown Swiss Breeder's Association Meeting OSU Animal Science Building

January 18—10 am Oklahoma PDCA Annual Meeting OSU Animal Science Arena

January 26—10 am-2 pm MO-AR Dairy Meetings West Plains, MO

January 27—10 am-2 pm MO-AR Dairy Meetings Bentonville, AR

Printing sponsored by MONSANTOFood \cdot Health \cdot Hope^{**} DAIRY RESEARCH & EXTENSION NEWS http://www.oznet.ksu.edu/dp_ansi/dairylin.htm

What We Learned About Cooling Cows in Kansas This Summer

J.F. Smith, M.J. Meyer, J.P. Harner III, J.E. Shirley, E.C. Titgemeyer

Elevated temperature and humidity during the summer months can have a dramatic affect on milk production of dairy cows. Heat stress occurs when the cow's heat load is greater than her capacity to lose heat. The cow's heat load increases as the mean summer temperature and relative humidity increases, while her ability to dissipate heat decreases. Cows regulate body temperature by increasing respiration rate, water consumption, and sweating, and by decreasing dry matter intake. These events result in depressed milk production and poor reproductive performance because of the shift in energy from these functions to body temperature regulation. The primary way dairy cows dissipate heat during heat stress is by evaporative cooling. Evaporative cooling occurs when sweat or other moisture is evaporated from the skin or respiratory tract. This explains why dairy cattle sweat and have increased respiration rates when they are experiencing heat stress.

Ninety-six holstein cows averaging 115 days in milk (DIM), and 60 holstein first-calf heifers averaging 97 DIM at the initiation of a 10-week study running from June 10 to August 22 were used to evaluate the effectiveness of three different cooling systems. Thirty-two multiparous cows and 20 first-calf heifers were assigned to one of three pens, with each pen containing a different cooling system. The three cooling systems consisted of (1) a single row of 36-inch fans, spaced at 24-foot intervals over the free stalls and over the feed row (FF), (2) 56-inch ceiling fans, spaced at 12-foot intervals over the free stalls (CF), and (3) polytube longitudinal cooling over the free stalls (PT). Each of the three cooling systems utilized the similar sprinkler systems located over the feed line. Dry matter intake, respiration rates, milk production, and body condition scores were collected and compared among the three pens.

Summer average milk production was significantly affected by the different cooling systems. Cows in the FF pen produced an average of 5.5 lbs/day more milk than CF and 6.7 lbs/day more milk than PT (p<0.05). Milk yield of multiparous cows appeared to be more dramatically affected by the different cooling systems, as cows housed in FF produced an average of 93.3 lbs/cow/ day and CF and PT produced an average of 87.3 and 82.3 lbs/cow/day, respectively. Milk production of first lactation heifers was not as dramatically effected by the different cooling systems. Heifers in FF pen produced 5.1 and 2.4 lbs milk/ cow/day more than CF and PT, respectively. Cows housed in FF produced 6.0 and 11.0 lbs/cow/day more than CF and PT, respectively.

Table 1 shows the summer average respiration rates for the heifers and cows combined. Throughout the summer, cows in FF had an average respiration rate of 8.3 breaths/minute less than CF and 7.1 breaths/minute less than PT (p<0.05).The respiration rates of cows in

Heart of America Dairy H	Herd Imp	provem	e <mark>nt Sum</mark>	mary (O	ctober
	-		rtiles		Your
	1	2	3	4	Herd
Ayrshire					
Rolling Herd Average	16,495	14,431	12,116	10,432	
Peak Milk Yield 1st	66.0	56.0	48.5	39.5	
Peak Milk Yield 2nd	77.0	67.3	52.5	51.0	
Peak Milk Yield 3rd	86.0	75.6	67.5	66.3	
Peak Milk Yield Avg.	76.0	63.6	58.0	62.0	
Income/Feed Cost	917	826	832	420	
SCC Average	307	285	351	286	
Days to 1st Service	77	89	90	107	
Days Open	116	120	137	171	
Projected Calving Interval	13.0	13.1	13.7	14.8	
Brown Swiss	10.0	10.1	10.7	11.0	
Rolling Herd Average	20,425	16,159	14,332	13,894	
Peak Milk Yield 1st	66.8	56.5	51.3	50.8	
Peak Milk Yield 2nd	86.4	75.1	61.6	67.3	
Peak Milk Yield 3rd	92.8	80.1	69.5	73.5	
Peak Milk Yield Avg.	92.8 82.4	70.6	63.3	63.8	
Income/Feed Cost	1,484	1,274	1,078	879	
SCC Average	308	297	293	324	
Days to 1st Service	83	87	71	47	
Days Open	153	143	185	138	
v *					
Projected Calving Interval	14.2	13.9	15.3	13.7	
Holstein					
Rolling Herd Average	22,301	19,467	17,407	14,318	
Peak Milk Yield 1st	78.6	70.0	64.0	55.8	
Peak Milk Yield 2nd	97.4	87.1	78.4	66.5	
Peak Milk Yield 3rd	104.5	93.4	84.6	72.4	
Peak Milk Yield Avg.	92.3	82.9	75.7	66.2	
Income/Feed Cost	1,723	1,463	1,237	959	
SCC Average	329	355	382	460	
Days to 1st Service	89	89	81	72	
Days Open	157	164	166	179	
Projected Calving Interval	14.4	14.6	14.6	15.1	
lersey					
Rolling Herd Average	16,370	13,804	12,161	9,792	
Peak Milk Yield 1st	55.7	49.0	47.5	40.0	
Peak Milk Yield 2nd	69.1	59.9	55.4	46.7	
Peak Milk Yield 3rd	74.6	63.7	58.6	50.3	
	67.6	58.0	54.9	50.5 46.0	
Peak Milk Yield Avg. Income/Feed Cost			939		
	1,499 321	1,136		661 306	
SCC Average		284	287	396	
Days to 1st Service	68	82	84	67	
Days Open	124	132	140	169	
Projected Calving Interval	13.3	13.5	13.8	14.8	
Milking Shorthorn	14 774 7	10.000	10.000	11 000	
Rolling Herd Average	14,715	13,623	13,099	11,283	
Peak Milk Yield 1st	55.0	53.0	47.0	51.0	
Peak Milk Yield 2nd	66.0	56.0	55.0	58.5	
Peak Milk Yield 3rd	78.0	74.0	68.0	60.0	
Peak Milk Yield Avg.	67.0	64.0	58.0	56.5	
Income/Feed Cost	1,360	1,257	954	843	
SCC Average	382	309	317	155	
Days to 1st Service	80	81	91	16	
Days Open	107	115	159	198	
Projected Calving Interval		13.0			

Hay Prices—Oklahoma

·····			
	Location	Quality	Price (\$/ton)
Alfalfa	Central/Western, OK	Premium	100-125
Alfalfa	Central/Western, OK	Good	85-100
Alfalfa	Panhandle, OK	Premium	95-110
Alfalfa	Panhandle, OK	Good	85-95

Source: Oklahoma Department of Agriculture, January 3, 1999

Total amount of feed fed and refused and number of cows per pen was recorded daily. This information was used to calculate dry matter intake per cow per day. Due to the fact that this data represents averages of all the cows and heifers in the pens, statistical analysis could not be completed. Higher dry matter intakes were recorded with increased milk production and reduced respiration rates. Average DMI for FF, CF, and PT were 44.7, 42.1, and 42.1 lbs/cow/day, respectively.

The body condition of cows and heifers was evaluated at the beginning and end of the study. Cows and heifers in FF, CF, and PT gained an average of 0.32, 0.22, and 0.18 BCS points respectively. Mature cows housed in FF gained more conditioning than those in PT (p<0.01).

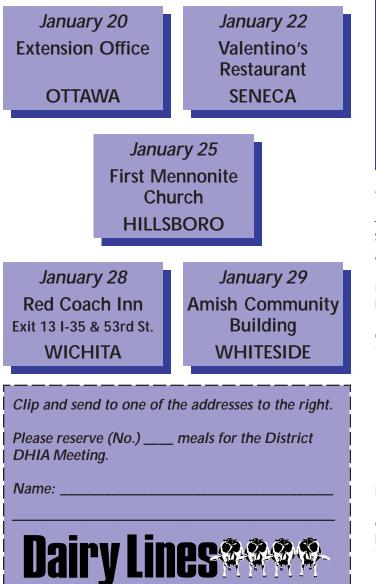
In summary, all three cooling systems reduced the negative effects of heat stress. The 36-inch fans (FF) had the highest milk production and dry matter intakes and the lowest respiration rate.

Acknowledgments

We thank Duane and Rhonda Meier, Meier Dairy Inc., for their participation in this study and the Kansas Dairy Commission and Monsanto for funding the project.

Kansas Quality Milk Award Winners—1998

Small Herd:	<50 Cows
1st Place:	Laverne Figge, Onaga
2nd Place:	Randy Osmun, Holton
3rd Place:	Thomas A. Haverkamp, Seneca
Medium Herd:	50-100 Cows
1st Place:	Donald & Barbara Kiehl, Pomona
2nd Place:	Henne Farms, Gypsum
3rd Place:	Harold Morrical, Beverly
Large Herd:	>100 Cows
1st Place:	Sperfslage Dairy, Oneida
2nd Place:	Kramer Dairy Farm, Corning
3rd Place:	Flory Dairy #2, Lawrence


Upcoming Events

February 8—10 am-2 pm Oklahoma District DHIA Meeting Mayes County Extension Office Pryor, OK

February 9—10 am-2 pm Oklahoma District DHIA Meeting Grady County Extension Office Chickasha, OK

Contact Dan Waldner at 405-744-6058 for more information on the previous events.

District Dairy Meeting

	AGENDA
10:00 a.m.	Registration
11:00 a.m.	Local DHIA Associations
NOON	Lunch—Sponsored by the Heart of America DHIA
1:00 p.m.	DHIA Update
2:00 p.m.	Educational Sessions
3:30 p.m.	Adjourn

To plan for meals, please make your reservation by January 15. Please clip and return the reservation slip or call one of the following K-State Research and Extension Offices:

Darren Hibdon Franklin County Agent 1418 S. Main, Suite 2 Ottawa, KS 66067 785-229-3520 David Key Nemaha County Agent 604 Nemaha, Ste. 201 Seneca, KS 66538 785-336-2184

Steve Tonn Marion County Agent Box 178 Marion, KS 66861 316-382-2325

Dave Sukup Heart of America DHIA 628 Pottawatomie Manhattan, KS 66502 785-539-1784

Greg McCormack

Reno County Agent 2 W. 10th South Hutchinson, KS 67505 316-662-2371

Hay Prices*—Kansas			
	Location	Quality	Price (\$/ton)
Alfalfa	Southwestern Kansas	Premium	85-100
Alfalfa	Southwestern Kansas	Good	65-80
Alfalfa	South Central Kansas	Premium	80-95
Alfalfa	South Central Kansas	Good	65-75
Alfalfa	Southeastern Kansas	Premium	85-100
Alfalfa	Southeastern Kansas	Good	80
Alfalfa	Northwestern Kansas	Premium	85-100
Alfalfa	Northwestern Kansas	Good	80
Alfalfa	North Central Kansas	Premium	85-95
Alfalfa	North Central Kansas	Good	80-85

Source: USDA Weekly Hay Report, *Week ending December 11, 1998* *Premium Hay RFV = 170–200 Good Hay RFV = 150–170

Feed Stuffs Prices		
	Location	Price (\$/ton)
SBM 48%	Kansas City	149.80-155.80
Cotton Seed Meal	Kansas City	146.50-148
Whole Cottonseed	Memphis	160
Blood Meal	Central United States	270-300
Corn Hominy	Kansas City	65-70
Corn Gluten Feed	Kansas City	75-85
Corn Gluten Meal 60%	Kansas City	300-310
Distillers Dried Grain	Central Illinois	76-82
Brewers Dried Grain	St. Louis	NA
Wheat Middlings	Kansas City	63-66
		D 1 0 1000

Source: USDA Weekly Feed Stuffs Report, Week ending December 9, 1998

COOPERATIVE EXTENSION SERVICE U.S. DEPARTMENT OF AGRICULTURE KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

Dairy Lines is jointly published for dairy producers by the Department of Animal Sciences and Industry, K-State Research and Extension, and the Department of Animal Science, Oklahoma Cooperative Extension Service.

For more information or questions, please contact 913.532.5654 (K-State) or 405.744.6058 (OSU).

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquiries from other individuals, associations and firms that may be interested in cosponsoring this publication.

Kansas State University **Cooperative Extension Service** Department of Animal Sciences and Industry Call Hall, Room 139 Kansas State University Manhattan, Kansas 66506

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, religion, national origin, sex, age, or disability.

Dairy Lines

John Smith Extension Specialist, Dairy Science K-State

Dan Waldner Extension Specialist, Dairy Science Oklahoma State

DAIRY RESEARCH AND EXTENSION NEWS K-State Research and Extension and Oklahoma State University