**July 1996** 

Volume 2, Number 7

## **Co-Editors**

James R. Dunham Extension Specialist, Dairy Science

John F. Smith Extension Specialist, Dairy Science

## Contributors

Karen Schmidt Associate Professor, Dairy Products John Shirley Associate Professor, Dairy Science Jeff Stevenson Professor, Dairy Science

Dave Sukup Manager, Heart of America DHI



August 16 & 17 Kansas Junior Dairy Show Salina, Kansas

August 28 & 29 Midwest Dairy Management Conference Minneapolis, Minnesota

# Why is Milk Production Depressed in the Summer?

KANSAS DAIRY EXTENSION

#### by John F. Smith

During heat stress we typically see a decrease in dry matter intake and milk production. We also see an increase in sweating, respiration rate and water consumption to compensate for the effects of heat stress.

Dairy producers are very aware of the decreased milk production and dry matter intake, however, often it seems that the milk production drops more than you would expect. The reason milk production drops dramatically during heat stress is that the maintenance requirement of the lactating cow increases as temperature increases.

Lactating dairy cows under heat stress require additional energy to maintain a normal body temperature. The additional energy or maintenance requirement is used to increase such things as respiration rate and sweating to dissipate heat. In Table 1, the changes in maintenance requirements, dry matter intake, and water intake to maintain 60 pounds of milk production with increasing temperatures is presented. Notice as the environmental temperature increased from 68 to 104°F, the dry matter intake required for maintenance increased 4.1 pounds. This is an increase in the dry matter required for maintenance of 32 percent. It would be nice if we could just feed the cows more dry matter and maintain the same milk production level,

Continued on page 3

NEW

Table 1. Relative changes in maintenance requirements, dry matter (DMI) and water intake to maintain 60 pounds of milk production with increasing environmental temperature

| Temperature | Maintenance<br>requirements | DMI required<br>60 lbs of milk | DMI requirements<br>for maintenance | Water<br>intake |  |
|-------------|-----------------------------|--------------------------------|-------------------------------------|-----------------|--|
| (°F)        | (% of req. at 68°F)         | (lb)                           | (lb)                                | (gal)           |  |
| 68          | 100                         | 40.1                           | 12.8                                | 18.0            |  |
| 77          | 104                         | 40.6                           | 13.3                                | 19.5            |  |
| 86          | 111                         | 41.7                           | 14.2                                | 20.9            |  |
| 95          | 120                         | 42.8                           | 15.4                                | 31.7            |  |
| 104         | 132                         | 44.5                           | 16.9                                | 28.0            |  |

Printing sponsored by



Sources: National Research Council. 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press, Washington, D.C. Dr. Joe West, Extension Dairy Specialist, University of Georgia.

#### Heart of America Dairy Herd Improvement Summary (June)

|                            |              | Qua          | rtiles |        | Vour |
|----------------------------|--------------|--------------|--------|--------|------|
|                            | 1            | 2            | 3      | 4      | Herd |
| Avrshire                   |              |              |        |        |      |
| Rolling Herd Average       | 17.377       | 14.379       | 13.358 | 11.705 |      |
| Summit Milk Yield 1st      | 61.7         | 51.2         | 50.7   | 45.8   |      |
| Summit Milk Yield 2nd      | 73.2         | 64.1         | 61.4   | 54.2   |      |
| Summit Milk Yield 3rd      | 80.0         | 71.1         | 67.1   | 59.9   |      |
| Summit Milk Yield Avg.     | 71.6         | 62.7         | 59.0   | 55.0   |      |
| Income/Feed Cost           | 1.068        | 953          | 923    | 623    |      |
| SCC 1st LACT               | 163          | 104          | 265    | 314    |      |
| SCC 2nd LACT               | 268          | 186          | 302    | 264    |      |
| SCC 3rd+ LACT              | 386          | 285          | 536    | 433    |      |
| SCC Average                | 273          | 203          | 376    | 359    |      |
| Days to 1st Service        | 92           | 86           | 89     | 74     |      |
| Days Open                  | 118          | 130          | 130    | 137    |      |
| Projected Calving Interval | 400          | 412          | 412    | 419    |      |
| Discours Constant          | 400          | 412          | 412    | 415    |      |
| Brown Swiss                | 10 971       | 16 107       | 14 990 | 19 090 |      |
| Summit Mills Vial 1 1-1    | 19,271       | 10,18/       | 14,339 | 12,029 |      |
| Summit Milk Yield 1st      | 00.8<br>70.2 | 51.7<br>60.5 | 00.0   | 43.2   |      |
| Summit Mills Vial J 2nd    | 79.3         | 09.5         | 02.2   | 55.9   |      |
| Summit Milk Yield 3rd      | 83.0         | 70.4         | 69.0   | 51.3   |      |
| Summit Milk Heid Avg.      | 1 4.4        | 07.0         | 01.7   | 31.3   |      |
| Income/Feed Cost           | 1,462        | 1,318        | 1,017  | 828    |      |
| SUC IST LACT               | 201          | 235          | 196    | 201    |      |
| SCC 2nd LACT               | 278          | 325          | 224    | 253    |      |
| SCC 3rd+ LACT              | 369          | 495          | 363    | 554    |      |
| SCC Average                | 310          | 378          | 280    | 400    |      |
| Days to 1st Service        | 90           | 86           | 85     | 99     |      |
| Days Open                  | 141          | 138          | 145    | 138    |      |
| Projected Calving Interval | 429          | 426          | 433    | 425    |      |
| Holstein                   |              |              |        |        |      |
| Rolling Herd Average       | 21,687       | 18,820       | 16,876 | 14,022 |      |
| Summit Milk Yield 1st      | 70.8         | 63.3         | 58.3   | 50.3   |      |
| Summit Milk Yield 2nd      | 90.5         | 80.3         | 73.0   | 61.7   |      |
| Summit Milk Yield 3rd      | 95.7         | 85.0         | 78.0   | 66.4   |      |
| Summit Milk Yield Avg.     | 84.4         | 75.6         | 69.7   | 60.0   |      |
| Income/Feed Cost           | 1,639        | 1,371        | 1,188  | 932    |      |
| SCC 1st LACT               | 246          | 279          | 308    | 338    |      |
| SCC 2nd LACT               | 262          | 299          | 331    | 403    |      |
| SCC 3rd+ LACT              | 436          | 484          | 529    | 611    |      |
| SCC Average                | 317          | 361          | 404    | 477    |      |
| Days to 1st Service        | 92           | 94           | 98     | 99     |      |
| Days Open                  | 142          | 142          | 143    | 142    |      |
| Projected Calving Interval | 422          | 422          | 423    | 421    |      |
| Jersey                     |              |              |        |        |      |
| Rolling Herd Average       | 15,698       | 13,328       | 11,988 | 10,109 |      |
| Summit Milk Yield 1st      | 51.3         | 46.2         | 40.9   | 36.1   |      |
| Summit Milk Yield 2nd      | 62.8         | 55.4         | 49.9   | 43.5   |      |
| Summit Milk Yield 3rd      | 67.5         | 60.1         | 53.3   | 46.8   |      |
| Summit Milk Yield Avg.     | 60.7         | 55.0         | 48.8   | 42.7   |      |
| Income/Feed Cost           | 1,469        | 1,019        | 930    | 732    |      |
| SCC 1st LACT               | 222          | 320          | 296    | 367    |      |
| SCC 2nd LACT               | 238          | 316          | 207    | 353    |      |
| SCC 3rd+ LACT              | 386          | 488          | 432    | 522    |      |
| SCC Average                | 297          | 394          | 341    | 426    |      |
| Days to 1st Service        | 85           | 89           | 89     | 91     |      |
| Days Open                  | 122          | 122          | 125    | 131    |      |
| Projected Calving Interval | 401          | 401          | 404    | 409    |      |

# **Don't Forget the Heifers**

#### by James R. Dunham

Feeding and management of replacement heifers during July and August can have a big impact on their performance this fall. All too often fall freshening heifers are a disappointment. They either do not milk as well as expected and/ or too many freshen with high somatic cell counts (SCC).

Many of the problems with fall freshening heifers are associated with heifers on pasture. If heifers are not supplemented with grain during the hot months, they will probably not be as large as expected and production will be depressed. The quality of grass in pastures during the hot months will not provide enough protein and energy to meet requirements for adequate growth. In fact, the nutrients provided on mature grass is about enough to meet maintenance requirements. Most heifers will require 7 to 8 pounds of a 16 percent protein grain mix in order to grow adequately.

A lot of dry cows are also pastured with the bred heifers. The same disappointment is often seen in the fresh cows since the pasture did not provide enough nutrients for adequate body condition as they approached freshening. Feeding dry cows and springing heifers the same grain mix usually works well.

SCC problems in fall freshening heifers may be caused by springing heifers standing in ponds or by flies. If the dry cows are with the heifers, expect the same problems when they freshen. Moving springers from pasture to a dry lot can solve this problem. Even in dry lot, heifers may become infected with mastitis if muddy conditions develop around the feed bunk.

Fly control is always important, but even more so as cows and heifers approach freshening. Flies can spread mastitis causing bacteria from one teat to another. Thus, too many heifers and cows are infected with mastitis when they freshen.





however, dry matter intake will decrease as temperature increases.

Table 2 lists the expected dry matter intakes and milk yield at increasing temperatures. Expected milk yields decrease from 59.5 to 22.5 pounds as temperature increases from 68 to 104°F. The key is to adopt practices that will minimize the effects of heat stress. Some key factors to reduce heat stress are listed below.

- Make clean, cool water available in multiple locations.
- Provide shade in housing areas and over the holding pen.
- Reduce the distance cows have to walk.
- Increase moisture content of TMR to 45-50 percent.
- Concentrate energy in the ration to minimize the amount of dry matter intake needed.
- Feed high quality forages.
- Feeding early and late in the day and as many times as convenient will encourage dry matter intake.
- Properly ventilate freestall housing and the milking center.
- Consider installing cooling systems in holding, housing, and feeding areas.





| Table 2. Relative changes in expected dry matter (DMI) and water intake and |
|-----------------------------------------------------------------------------|
| milk yield with increasing environmental temperature                        |
|                                                                             |

| _           | E    | xpected intakes and milk y | ield   |  |
|-------------|------|----------------------------|--------|--|
|             |      | Milk                       | Water  |  |
| Temperature | DMI  | yield                      | intake |  |
| (°F)        | (lb) | (lb)                       | (gal)  |  |
| 68          | 40.1 | 59.5                       | 18.0   |  |
| 77          | 39.0 | 55.1                       | 19.5   |  |
| 86          | 37.3 | 50.7                       | 20.9   |  |
| 95          | 36.8 | 39.7                       | 31.7   |  |
| 104         | 22.5 | 26.5                       | 28.0   |  |

Sources: National Research Council. 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press, Washington, D.C. Dr. Joe West, Extension Dairy Specialist, University of Georgia.

| Hay Prices* |                      |         |                |  |
|-------------|----------------------|---------|----------------|--|
| _           | Location             | Quality | Price (\$/ton) |  |
| Alfalfa     | Southwestern Kansas  | Premium | 110-120        |  |
| Alfalfa     | Southwestern Kansas  | Good    | 100-105        |  |
| Alfalfa     | South Central Kansas | Premium | 100-110        |  |
| Alfalfa     | South Central Kansas | Good    | 90-100         |  |
| Alfalfa     | Southeastern Kansas  | Premium | 100-115        |  |
| Alfalfa     | Southeastern Kansas  | Good    | 90-100         |  |
| Alfalfa     | Northwestern Kansas  | Premium | 90-105         |  |
| Alfalfa     | Northwestern Kansas  | Good    | 80-90          |  |
| Alfalfa     | North Central Kansas | Premium | 90-100         |  |
| Alfalfa     | North Central Kansas | Good    | 80-90          |  |

Source: USDA Weekly Hay Report, Week ending July 5, 1996

\*Premium Hay RFV = 170-200

Good Hay RFV = 150-170

| Feed Stuffs Prices          |                                 |                |  |
|-----------------------------|---------------------------------|----------------|--|
|                             | Location                        | Price (\$/ton) |  |
| SBM 48%                     | Kansas City                     | 244.10-245.10  |  |
| Cotton Seed Meal            | Kansas City                     | 216            |  |
| Whole Cottonseed            | Memphis                         | 185            |  |
| Meat and Bone Meal          | <b>Central United States</b>    | 230-240        |  |
| Blood Meal                  | <b>Central United States</b>    | 380            |  |
| Corn Hominy                 | Kansas City                     | 146-150        |  |
| Corn Gluten Feed            | Kansas City                     | 125            |  |
| Corn Gluten Meal 60%        | Kansas City                     | 315            |  |
| Distillers Dried Grain      | Central Illinois                | 142-147        |  |
| Brewers Dried Grain         | St. Louis                       | 111-115        |  |
| Wheat Middlings             | Kansas City                     | 111-115        |  |
| Comment LICD A Westeles For | d Charles David Weak and the st | L-L- 7 1000    |  |

Source: USDA Weekly Feed Stuffs Report, Week ending July 5, 1996

Department of Animal Sciences & Industry 125 Call Hall Manhattan, Kansas 66506–1600

Nonprofit Organization U.S. POSTAGE PAID Permit #525 Manhattan, Kan. 66502



Dairy Lines is published for dairy producers by the Department of Animal Sciences and Industry, Cooperative Extension Service, Kansas State University.

For more information or questions, please contact Extension Animal Sciences and Industry at (913) 532-5654.

Jeck

**Dick Dunham** Extension Specialist, Dairy Science

John Smith Extension Specialist, Dairy Science

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquires from other individuals, associations and firms that may be interested in cosponsoring this publication.

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, national origin, sex, age, or UNIVERSITY disability.

TO A A A KANSAS DAIRY EXTENSION NEWS