Effects of Round Bale Feeding Methods on Hay Waste and Animal Performance

November 6, 2012 Eastern KS. ASI Agent Update Austin Sexten, PT. Co. ANR Agent

Background

 Harvested feed is the largest cost contributor to maintaining a profitable beef cattle herd (Miller et al., 2001)

 Large round bales are the most common form of packaging harvested hay (Belyea et al. 1985)

Background

Concerns

- Hay waste
- Costs
 - Hay
 - Equipment
 - Labor/time

Objectives

- Evaluate popular types of hay feeding methods and their effects on hay waste and cow performance
- Determine how different feeder types effect hay waste and feeding behavior of animals
- Discuss alternative methods of feeding hay to reduce waste

Popular hay feeding methods

Ground unrolling

– Fast

 All animals can access feed at once

– "Bed and Breakfast"

Popular hay feeding methods

PTO- Driven Bale

Processor

- Decreases particle length
 - Increased digestibility?
 - Increased K_p
 - Difficult to eat
- Reduced feeding time

- Cost: \$8,000-15,000

Popular hay feeding methods

- Bale Feeder
 - Many types
 - Affordable
 - \$150-1000
 - Can put out many days worth of feed

- No trampling

Effect of hay feeding methods on cow performance, hay waste, and wintering cost

Landbolm, et al., 2007 nowledge

- Materials and methods
 - 360 crossbred cows
 - 610 kg
 - Three year study
 - Alfalfa mix
 - Oat hay
 - 4 replicates /method
 - 2.02 ha dry lot
 - 59 d

Effect of hay feeding methods on cow performance

Feeding Method								
Item	Roll out on ground	PTO processor	Tapered cone feeder	SE	P-Value			
BW gain, kg	22.5ª	29.9 ^b	36.1 ^b	2.72	< 0.01			
ADG, kg	0.381ª	0.507 ^b	0.611 ^b	0.046	< 0.01			
Hay/cow, kg	815ª	799 ^b	692 ^c	14.21	< 0.01			

^{a-c}Values with unlike superscripts differ significantly (P< 0.05)

^dValues are hay /cow, kg from year 1

Landbolm, et al., 2007

Knowledge

Quantitative analysis of feeding area waste for each feeding method

Feeding method						P- Va	lue
ltem	Roll out on ground	PTO processor	Tapered cone feeder	SE	Yr	Trt	Yr × Trt
Alfalfa mix, kg	61.5	52.5	12.1	9.72	0.09	0.30	< 0.01
Oat hay, kg	48.4	28.1	90.3		—	—	—

Three-year economic analysis comparing hay feeding methods for a 100 head cow herd

	Feeding method						
Item	Roll out on ground	PTO processor	Tapered cone feeder				
Hay cost/ cow, \$	98.58	103.11	89.45				
Total non-hay expense per cow, \$	10.44	23.90	10.81				
Total cost per cow, \$	109.02	127.01	100.26				

Landbolm, et al., 2007

Implications

 Tapered cone bale feeder was superior winter hay feeding method

Reduced waste

Decreased amount of hay per cow

Decreased wintering cost per cow

What are the effects of different feeder types?

Does design effect hay waste?

Does design effect DMI?

• Does design effect cow behavior?

Large round bale feeder design affects hay utilization and beef cow behavior

- Materials and methods
 - 4 Feeder types
 - Dry, pregnant beef cows (n=160)
 631 ± 78 kg
 - 8 pens
 - 2 replicates for each feeder type

Knowledge

Buskirk, et al., 2003

Large round bale feeder design affects on hay utilization

	Feeder Type					
Item	Cone	Ring	Trailer	Cradle	SEM	
Daily hay disappearance, kg/cow ^a	12.0×	12.1×	13.9 ^y	12.9 ^{×y}	0.4	
Daily hay waste, kg/cow	0.4×	0.7 ^y	1.6 ^z	1.9 ^z	0.1	
Hay waste, % ^b	3.5×	6.1×	11.4 ^y	14.6 ^y	0.8	
Daily hay intake, kg/cow ^c	11.5	11.4	12.3	11.0	0.4	
Intake/cow BW, %	1.8	1.8	2.0	1.8	0.1	

^aHay fed less residual hay at the end of the period.

^bHay waste as a percentage of hay disappearance.

^cHay disappearance less hay waste.

^{x,y,z}Within a row, least sqaures means without a common superscript letter differ (P < 0.05).

Buskirk, et al., 2003 Knowledge

Effect of feeder type on feeding behavior and dry matter waste

	Feeder Type					
Item	Cone	Ring	Trailer	Cradle	SEM	
Agonistic interactions/h	10.9×	7.4×	13.6 ^x	30.7 ^y	3.2	
Frequency of entrances, No./h	6.3 ^x	8.0×	8.3×	29.8 ^y	3.3	
Daily DM waste, kg ^a	9.5×	14.5×	26.6 ^y	50.0 ^z	2.8	

Buskirk, et al., 2003 Knowledge

^aDaily DM waste during simultaneous behavior data collection. ^{xyz}Within a row, least squares means without a common superscript letter differ (P < 0.05).

Implications

- Feed losses significantly influenced by feeder type
 - Cone = Ring < Trailer < Cradle</p>
- Feeder design affected the animal behavior

Effects of Bale Feeder Type on Hay Waste, Intake, and Performance of Beef Cattle

A. J. Sexten, C. P. McMurphy, G. L. Mourer, C. D. Dobbs, M. A. Brown, C. J. Richards, and D. L. Lalman

- Modified Cone (MODC)
- \$525.00
- 136.2 kg
- 54.6 cm apron
- 9 feeding stations

- Open bottom steel ring (OBSR)
- \$100.00
- 45.4 kg
- Open bottom
- 6 Feeding stations

- Polyethylene Pipe (POLY)
- \$209.00
- 45.4 kg
- Open bottom
- 6 Feeding stations

- Sheeted bottom steel ring (RING)
- \$300.00
- 100.8 kg
- 55.9 cm solid apron
- 16 feeding stations

Research and Extension

Effect of Feeder Design on Waste and DMI

Hay Waste								
Item	MODC	OBSR	POLY	RING	SEM	P-value		
Total waste, kg	32.31ª	128.5 ^b	133.59 ^b	77.01 ^c	9.95	< 0.01		
Orts weight, kg	102.9 ^a	36.53 ^b	29.95 ^b	45.07 ^b	10.79	< 0.01		
Waste, % bale wt	5.31ª	20.54 ^b	21.04 ^b	12.6 ^c	1.62	< 0.01		

^{a,b,c}Means within a row with uncommon superscript differ (P < 0.05)

Dry Matter intake								
Feeder								
Item	MODC	OBSR	POLY	RING	SEM	P-value		
DMI, kg/hd/d	8.37	8.19	8.43	8.75	0.24	0.12		
DMI, % BW	1.70	1.67	1.72	1.78	0.05	0.12		

Knowledge

Implications

- MODC was most efficient design
 - Less waste = longer
 feeding period = less hay
 used annually
- Sheeted bottom results in less waste
- Feeder design didn't affect DMI

Ad libitum access to feeders?

Feeding losses

- 12-25%
 - (Belyea et al. 1985)

Feeding to meet cow requirements

- Decrease
 - Cost
 - Hay waste
 - Overcumsumption
 - Manure production
- How?

Ad libitum access to feeders?

		P-Value			
Item	6	14	24	24 h vs. restricted	14 vs. 6 h access
DMI, lb	21.2	24.4	27.4	< 0.0001	< 0.01
Hay waste, lb*	0.8	4.2	7.7	<0.0001	0.0026
BW change, lb	27.3	36.5	51.2	0.051	> 0.10

*Expressed as a % of DMI Adapted from Jaderburg et al., 2011

Implications

- Limiting access time results in:
 - Acceptable performance
 - Decreased DMI
 - Decreased hay waste
 - Decreased overall costs due to:
 - Less hay needed
 - Less labor needed

Concluding Remarks

- Round bale feeding method effects
 - Hay waste
 - DMI
 - Cow behavior
 - Cow performance
 - Overall feeding cost

• Feeding method is ranch specific

Concluding Remarks

- Sheeting height matters
 - Calves vs. Cows
- Consider commercial name vs. visual appraisal of feeder
- Other feeding options
 - Bale grazing
 - Hot wire bunks

Literature Cited

- Belyea, R. L., F. A. Martz, and S. Bell. 1985. Storage and feeding losses of large round bales. J. Dairy Sci. 68:3371-3375.
- Buskirk, D. D., A. J. Zanella, T. M. Harrigan, J. L. Van Lente, L. M. Gnagey, and M. J. Kaercher. 2003. Large round bale feeder design affects hay utilization and beef cow behavior. J. Anim. Sci. 81:109.
- Cunningham, T. C., D. B. Faulkner, PAS, A. J. Miller, and J. M. Dahlquist. 2005. Restricting intake of forages: An alternative to feeding strategy for wintering beef cows. Prof. Anim. Sci. 21:182-189.
- Jaderborg, J. P., G. I. Crawford, and A. DiCostanzo. 2011. Access time to hay feeder by gestating beef cows affects dry matter intake and hay waste. 2011 University of Minnesota Beef Report Publication BR-1103.
- Landbolm, D. G., G. P. lardy, R. Fast, C. J. Wachenheim, and T. A. Petry. 2007. Effect of hay feeding methods on cow performance, hay waste, and wintering cost. Prof. Anim. Sci. 23:246-252.
- Miller, A. J., D. B. Faulkner, R. K. Knipe, D. R. Strohbehn, D. F. Parrett, and L. L. Berger. 2001. Critical control points for profitability in the cow-calf enterprise. Prof. Anim. Sci. 17:295-302.
- Miller, A. J., D. B. Faulkner, T. C. Cunningham, and J. M. Dahlquist. 2007. Restricting time of access to large round bales of hay affects hay waste and cow performance. Prof. Anim. Sci. 23:366-372.

