Forage Options for Drought Stressed Corn

Options

Silage

- Reduced nitrates (30-70%)
- Improved feeding
- Increased harvested material
- Moisture level and cost

Bale Dry Stover

- Drying time (2-3 wks)
- Equipment issues
- No reduction in nitrate level
- Less water to haul

Grazing

- Low dry matter recovery (less than 50%)
- Low cost
- Possible nitrate issues
 - Do not force cattle to eat the bottom 10-12 inches of the stalk

Estimating the yield

Based on grain yield

- < 100 bu/acre</p>
 - 1 ton 30% dm silage/5 bu of grain
 - 20 bu corn yield = 4 ton of silage
- ->100 bu/acre
 - 1 ton 30% dm silage/6-7 bu of grain
 - -150 bu corn yield = 21.4 to 25 ton of silage

Based on Plant Height – No grain

- 1 ton of 30% dm silage/ft of plant height excluding tassel
 - 5 ft of plant height = 5 ton/acre of silage

Actual Yield Estimate

- 8.7ft of row (30 inch row spacing) = 1/2000 acre
- Cut 8.7ft of row in 15-20 spots in the field
 - Start measurement between two plants
- Cut at cutter height
- Weight total weight and multiply by 2000
- Divide by 2000lb/ton = tons/acre
 - Whole plants from 8.7ft of row weighs 10 lbs
 - 10 x 2000 = 20,000lb/acre / 2000lb/ton = 10 ton/acre

Conversion of Silage to Hay Yield

- 10 ton/acre @ 30%DM
 - $-10 \text{ ton } \times 0.30 = 3 \text{ ton/acre of DM}$
- 3 ton/acre DM
 - -3 ton / 0.85 (85% dm hay) = 3.53 ton @ 85% DM

Actual Yields

- Hybrid
- Weather conditions
- Harvest height
- Harvest loss
- Forage moisture

Nutrient Content

Item	Normal Corn Silage*	Stressed Corn Plants**	Stalkage*	Brome Hay**	Wheat Straw**
DM, %	33.7	32.0	68.0	89.1	89.7
CP, %	8.3	11.82	6.1	10.17	5.32
ADF, %	25.9	29.89	47.1	35.95	49.49
NDF, %	43.8	50.71	70.7	57.87	71.43
NE _L , Mcal/lb	0.73	0.70	0.34	0.55	0.41
NE _M , Mcal/lb	0.73	0.73	0.39	0.52	0.28
NE _G , Mcal/lb	0.46	0.43	0.14	0.26	0.13
TDN, %	70.7	67.9	49.9	54.4	41.8

^{*} Data from Dairy One Forage Lab **Data from SDK Labs, Hutchinson

Value of Normal Corn Silage

- $8 10 \times bu \text{ price of corn}$ (price of whole plant material)
 - 8 for a standing crop
 - 10 for ready to feed silage
 - Corn at \$7.50/bu
 - \$60/ton @35% DM standing in the field
 - \$75/ton @35% DM harvested and packed in silo
- What the market will allow

Feeding Value Stressed Corn

Estimate Grain Yield	% of Normal Corn Silage
20 – 40 bu/acre	90 – 100%
0 – 20 bu/acre	80 – 90%
Short barren stalks	70 – 80%

UW - Madison

\$60/ton = \$42.00 - \$54.00/ton standing in the field \$75/ton = \$52.5 - \$67.5/ton packed in the silo

Value Based on TDN or Energy

	Utility Alfalfa	Straw	Brome	Corn
\$/ton	180	65	120	270
DM, %	87	90	88	88
TDN, %	52	41.8	54.4	88.1
NE _M , Mcal/lb	0.58	0.28	0.52	1.0
*\$/pt of TDN	0.199	0.086	0.125	0.174
*\$/Mcal of NE _M	0.178	0.129	0.131	0.153

35% DM Stressed corn with 67.9% TDN = \$41 - \$95/ton less harvest cost

35% DM Stressed corn with 0.73 Mcal, NEM = \$66 - \$91/ton less harvest cost

Other Factors in Pricing

- Silage
 - Buyer suffers the storage loss
 - 15-50% of the dry matter
 - Losses of comparison crops is 2-5%
 - For value comparisons, need to adjust for storage loss
- Alfalfa may be overpriced compared to other forages

Helping Producers Price Forage

- Win, win for both parties
- Crop producers need to work with crop insurance companies first!!!
- Silage pricing spreadsheet can be helpful if grain is present
- Alternate pricing methods if dealing with barren stalks
- Local markets will result in significant price variation

Harvest Moisture

- Critical factor for good silage
 - 30-35% DM is the target
 - 40% DM is getting pretty dry
 - Increased storage and feeding losses
- Handful of finely cut material squeezed tightly for 90 seconds and then grip is released
 - Juice between fingers or running 15-25% DM
 - Ball holds shape when pressure is released and the hand is moist – 25-30% DM
 - Ball expands slowly and no dampness on hand 30-40% DM
 - Ball springs out when hand is open >40% DM
- Actual testing with microwave or Koster tester is the best

Nitrate Toxicity

- Nitrite (NO₂) not Nitrate (NO₃) Toxicity
 - Rumen bacteria reduce NO₃ to NO₂
 - Normally NO₂ converted to ammonia
 - Excessive NO₂ overloads the system
 - Nitrite absorbed into blood
 - Nitrite converts hemoglobin to methemoglobin
 - Loss of oxygen carrying ability of hemoglobin
 - Animal dies of asphxsiation
 - Sick, hungry, lactating or pregnant most susceptible

Symptoms of Toxicity

- Factors of toxicity
 - Amount consumed
 - Length of time for consumption
- Symptoms
 - Bluish color of mucus membranes
 - Labored breathing
 - Muscular tremors
 - Collapse and death within 2-3 hours

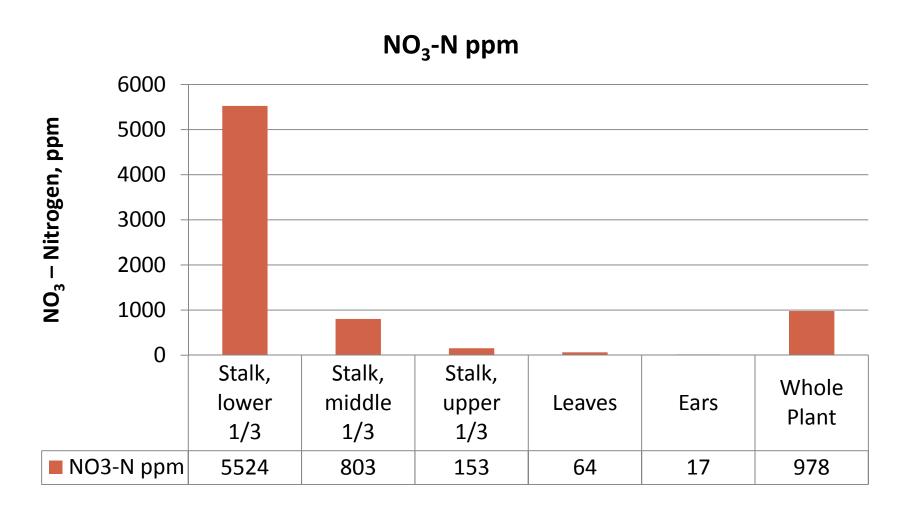
Qualitative Nitrate Test

Reagent A

 500 mg of diphenylamine dissolved in 20 ml of water and brought to a final volume of 100 ml with concentrated sulfuric acid (amber storage bottle and storage in dark place)

Reagent B

 20 ml of water to which 80 ml of concentrated sulfuric acid is carefully added.


Field Test

- Mix equal parts of reagents A and B and apply mixture to cut portion of plant, if it turns blue, nitrates are present
- If nitrates are detected, a quantative analysis is needed

What to sample

- Most stressed plants in the field
 - Field edges next to trees
 - Slopes of the field
- Bottom 1/3 of the stalk
 - Higher levels of nitrate in the lower portion of the stalk

Nitrate Levels in Corn Stalks

Nitrate Levels

ppm Nitrate (NO ₃)	Effect on animals
0 – 3,000	Virtually safe
3,000 – 6,000	Moderately safe in most situations; limit use for stressed animals to 50% of the total ration
6,000 – 9,000	Potentially toxic to cattle depending on the situation; do not use as the only source of feed
9,000 and above	Dangerous to cattle and will often cause death

Conversion Factors for Nitrate Reports

Potassium Nitrate x 0.61 = Nitrate (ppm NO₃)

Nitrate-Nitrogen x $4.42 = Nitrate (ppm NO_3)$

% Nitrate x 10,000 = Nitrate (ppm NO₃)

Special Nitrate Considerations

- If nitrates are present
 - Cut plants at 10-12 inches from the ground
- Rain can cause nitrates to accumulate quickly
 - Wait 7-14 days before chopping to allow nitrates levels to be reduced
- Certain plants accumulate nitrates
 - Lambsquarters, pigweed, Johnsongrass

Summary

- Drought stressed corn can be a useful feed source
- Silage offers advantages of
 - Increased quality
 - Opportunity to reduce nitrates
 - TMR feeding
 - Increased yields
- Watch for nitrates commercial lab recommended
- Pricing needs to be a win, win for both parties
- Adapt to high nitrate forages slowly