
Breeding System Opportunities and Costs

Sandy Johnson ASI Update Nov. 2015

http://www.wulfcattle.com/GeneticValue/RedLimousinBulls/Product-Wulf-Xtractor-X233X_17931.aspx

Contact Info:

Mike Kasten

Mike's Bio

Mike Kasten QB Program Director (573) 979-0889 The QB mission is to improve profitability of beef cow-calf operations by facilitating the adoption of applied reproductive and genetic technologies that will add value to beef cattle produced and marketed in the U.S. and contribute to improvements in beef quality to satisfy increasing domestic and global demand for high-quality beef.

QB Guidelines

QB Program Overview

QB Program Guidelines

QB Commercial Feed Yard Program

QB By the Numbers - EPD

QB By the Numbers - Economic Indices

QB Newsletters

Spring 2014

Table 3. Frequency of factors contributing to the profitability of Al¹

	Frequency	Commercial	Multiple	Seedstock
Value of replacements	80			
Reduce calving difficulty	55			
Premium at weaning	46	46	54	38
Raising bulls for others	42	9	52	51
Raising bulls for yourself	38	27	51	30
Premium for carcass	29	26	38	21

¹Survey asked "How does AI contribute to the profitability of your operation? Please check all that apply."

Al in a commercial herd

"I don't understand why the whole world doesn't use applied reproductive technologies, at least on heifers,"

Herbert Holzapfel, Holzapfel Ranch Willows, CA listen at www.appliedreprostrategies.com

Table 2. Effect of cattle industry involvement¹ on value of Al-sired calves, semen cost, and years of Al experience

	Value of AI- Sired Calves	Semen Cost	Years Al Experience
Commercial	187 ± 79 ª	22.2 ± 1.6 a	11.4 ± 1.3 a
Seedstock	709 ± 63 ^b	29.7 ± 1.3 b	16.9 ± 1.0 b
Multiple	398 ± 58 ^c	25.6 ± 1.2 a	15.4 ± 0.9 b

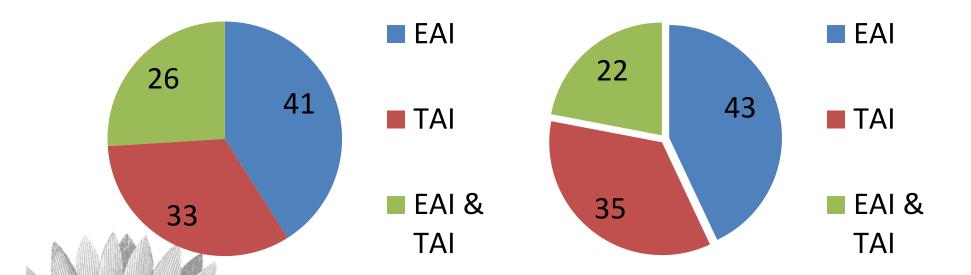
¹ Involvement in the cattle industry: Commercial cow/calf producer, Seedstock producer, Commercial heifer development, AI Technician, Veterinarian, or Other; more than one response was allowed

Chute-side service available

American Rancher episode visits cattlemen in Missouri who use Genex chute side service

Google –

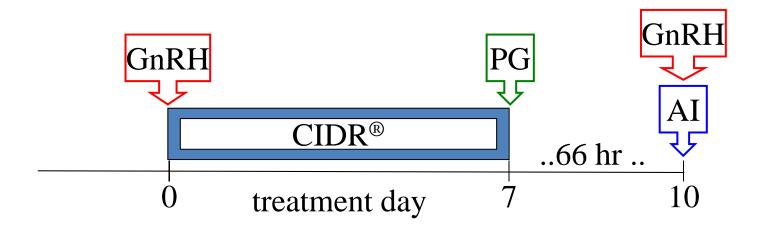
"Genex_Proof_Final_042213"

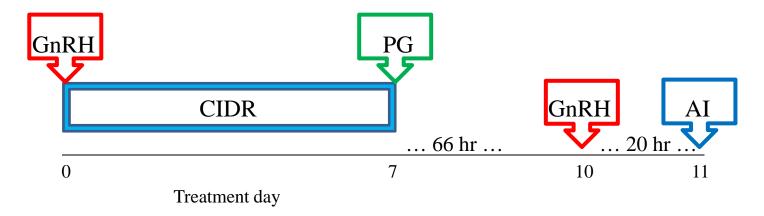


Darcy Sexson, who blogs at Success is Reason Enough, is always willing to share her pictures with me. Here's one of my favorites because it shows the people involved. So many times we only see the heifers heading to or from the breeding barn, but without a great group of people the project wouldn't be possible. It takes the cooperation of the ranch crew and Genex to make any A.I. project successful!

http://crinetsupport.blogspot.com/2015/05/genexchutesideservice-month-of-may.html

Insemination practices


Knowledge forLife


Split time AI with Sexed Semen

Normal fixed-timed AI protocol

Modification for non-estrous cows

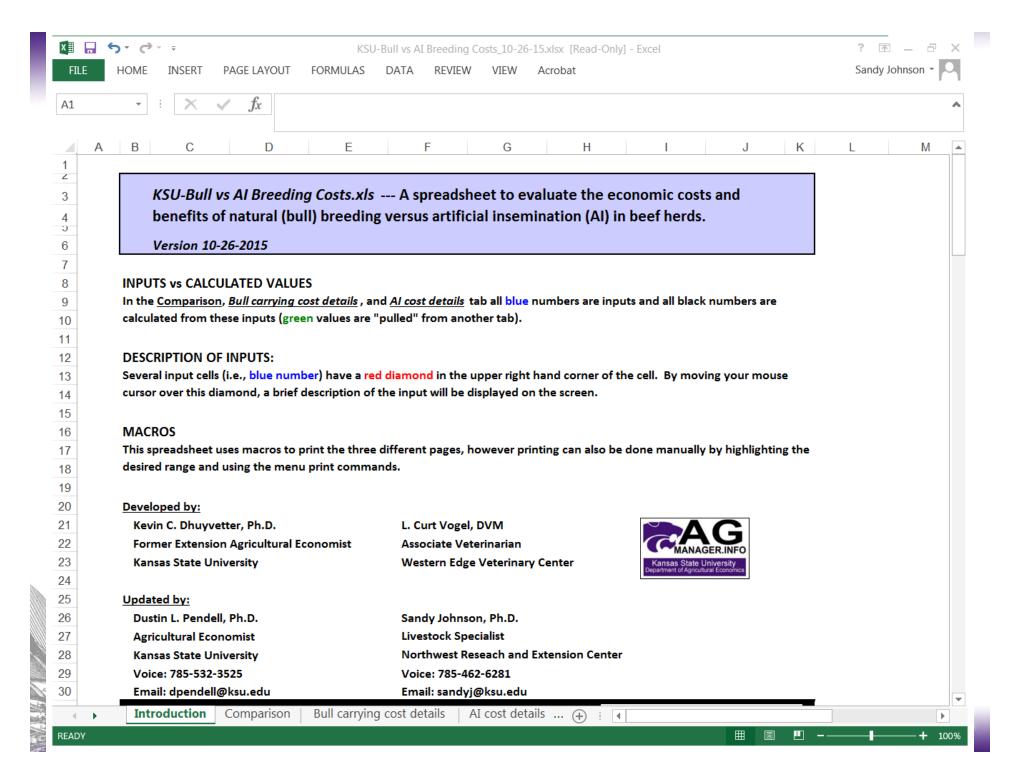
OPTIMIZING THE USE OF SEX-SORTED SEMEN IN FTAI

	Pregnancy rates							
Estrus	Conventional Semen @ 66 hr	Sex-sorted Semen @ 66 hr	Sex-sorted @ 66 hr with delay of non- estrous					
Yes	77% ^a (81/105)	51% ^b (53/104)	42% ^b (47/111)					
No	37% ^c (42/113)	2% ^d (3/113)	36% ^c (40/110)					
Total	56% (123/218)	26% (56/217)	39% (87/221)					

- Treatment x estrous expression interaction (P < 0.0001)
- Pregnancy rates within a row with different superscripts are different (P < 0.0001)

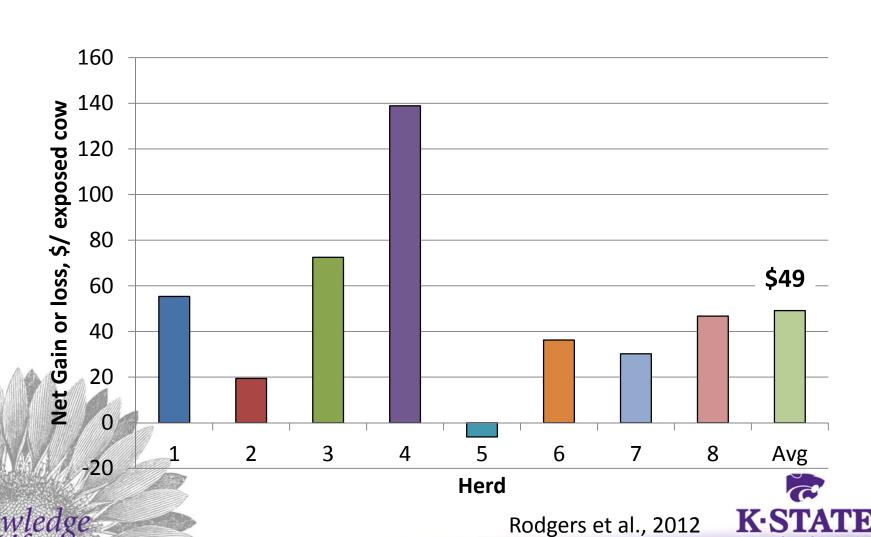
Thomas et al., 2015

Specialization



Cost Per Pregnancy – Natural Service

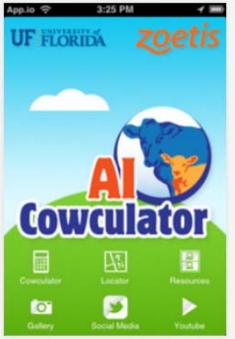
	Bull Purchase Price						
Cow:Bull	\$5000	\$5500	\$6000	\$6500	\$7000		
15	133	144	155	166	177		
20	100	108 116		124	132		
25	80	86	93	99	106		
30	66	72	77	83	88		
35	57	62	66	71	76		
40	50	54	58	62	66		
50	40	43	46	50	53		



			100% bull	AI plus
			power	Clean-up bulls
		Cost		
Annual Bull Cost/I	Female Exposed			
Number of female	s bred		100	100
Cow-to-bull ratio ((cows per bull)		25	25
Number of bulls ne	eeded		4.0	2.0
Cost per female ex	kposed		\$74.64	\$37.32
T-+- D			Ċ74.C4	ć00.22
Total Breeding Cos		posea	\$74.64	\$98.32
Final Pregnancy rate, % Total Breeding Cost per Female Bred			92.0%	92.0%
Total Breeding Cos	st per Female Bre	ea	\$81.13	\$106.87
		Benefit		
Added Value of A	.I. Sired Calf at V	Veaning, \$/hd	n/a	\$50.00
(due to age, geneti	ics, gender, etc.)			
			4-4-4-	4== ==
Total Cost per F	emale Bred		\$81.13	\$79.37

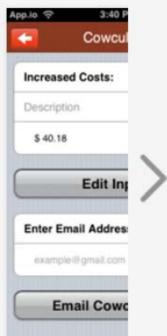
Net gain or loss from fixed-timed Al

Al Cowculator


Applinovators - June 10, 2013 Tools

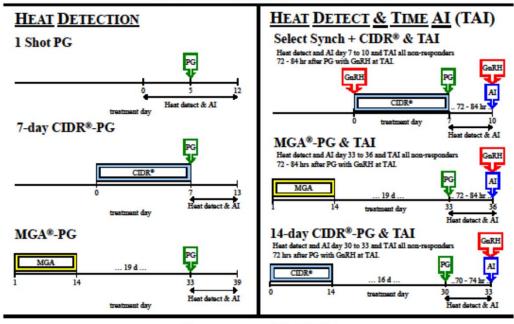
Installed

For iphone and androids

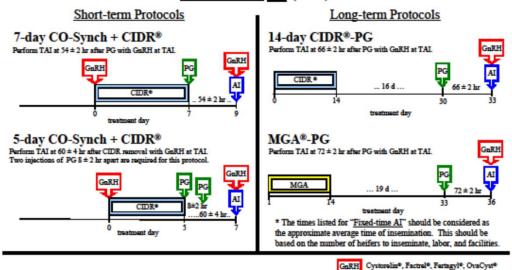

This app is compatible with your device.

8+1 +3 Recommend this on Google

Al Cowculator Inputs

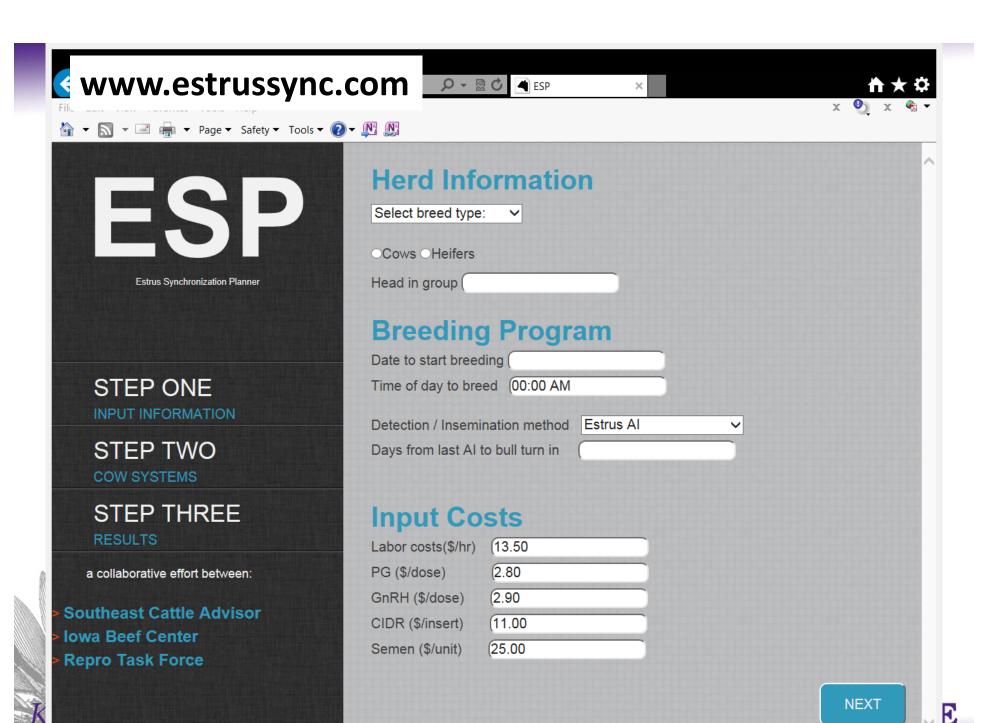

- Bull Maintenance cost
- Bull purchase price
- Useful life of bull
- Salvage value
- Interest rate
- Number of natural service bulls
- Number of bulls for clean up after Al

- Number of cows
- Expected weaning wt.
- Price of weaned calf
- Al labor cost
- Al facilities & equipment
- Synchronization products cost
- Semen cost
- Technician cost



BEEF HEIFER PROTOCOLS - 2014

FIXED-TIME AI (TAI)*



Beef Reproduction Task Force

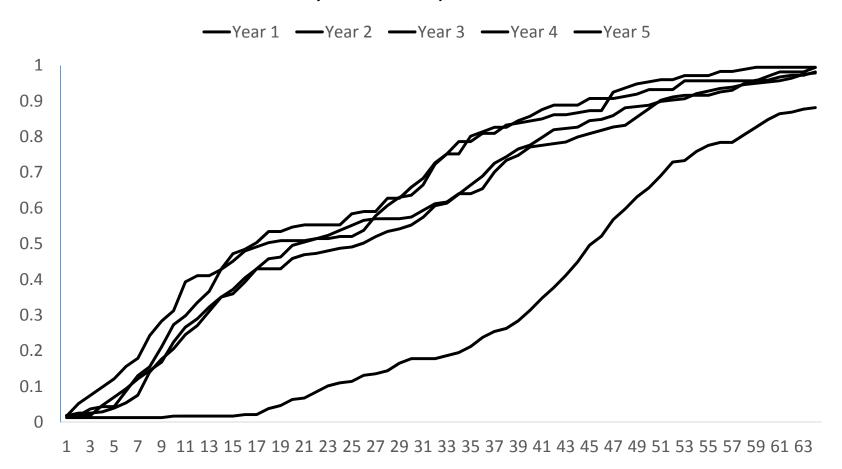
estroPLAN*, Estrumate*, In-Synch*,

Lutalyse®, ProstaMate®

Estrus Synchronization Planner

Free download at

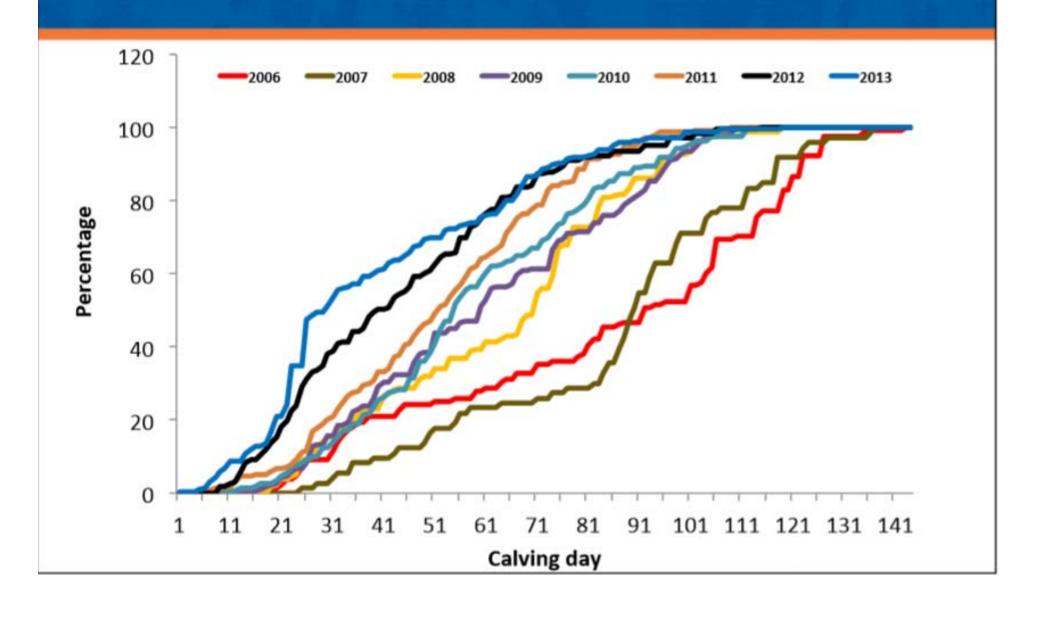
http://iowabeefcenter.org/estrus synch.html



Features

- Recommended systems for cows
 & heifers
- Select systems by type
 - Heat detect & Al systems
 - Heat detect & cleanup AI systems
 - Fixed-Timed AI Systems
- List of daily activities
- Generates Barn Calendar
- Cost per Al pregnancy
- Support materials

Figure 2. Cumulative proportion of cows calving in the same herd over time. Year 1 unsynchronized and natural service, in subsequent years, synchronization and fixed-timed AI followed by cleanup natural service.



Attitude towards Al

http://www.mirandaochocki.com/attitude-changes-everything/

UF-NFREC CASE STUDY

UF-NFREC CASE STUDY

Breeding season pregnancy rates:

Year	2006	2007	2008	2009	2010	2011	2012	2013
PR	81%	86%	84%	86%	82%	94%	92%	93%
Mean calving day	79.2	80.9	59.2	56.2	53.7	47.2	39.5	38.7
BS length	120	120	110	88	80	75	70	72

UF-NFREC CASE STUDY

Change in calf value:

Year	2006	2007	2008	2009	2010	2011	2012	2013
Mean calving day	79.2	80.9	59.2	56.2	53.7	47.2	39.5	38.7
Difference from 2006/2007	0	0	21.7	24.7	27.2	33.7	41.4	42.2
Per calf increase in value	0	0	\$87	\$99	\$109	\$135	\$166	\$169
Herd increase in value	0	0	\$19,100	\$29,700	\$32,700	\$40,500	\$49,800	\$50,700

