KSU BEEF STOCKER FIELD DAY

September 20, 2018 KSU Beef Stocker Unit

PROCEEDINGS

Beef Stocker Field Day 2018 September 20, 2018 KSU Beef Stocker Unit

Table of Contents

<u>P</u> :	<u>age No</u> .
Table of Contents	i
Welcome and Thank You	ii
Program Agenda	ii
The Role of Stocker Producer Expectations in Cattle Buying Decisions	1
An Update on Pain Management in Cattle	22
Quality Stocker Production Considerations	46
The Tech Revolution, Wall Street, Baseball and the Cattle Industry	57
Rethinking BRD Diagnosis	70
Livestock Theft in Kansas	78
Treatment Failures that are not BRD Related	91

Beef Stocker Field Day 2018 September 20, 2018 KSU Beef Stocker Unit

Welcome to the 19th annual KSU Beef Stocker Field Day. We appreciate your attendance and support of this educational event. We are fortunate to have assembled an outstanding list of presenters and topics that we believe are relevant to your bottom line.

As always, if you have any questions on the program or suggestions for future topics, please let us know. Our strength in delivering relevant information lies in working closely with you, our stakeholder.

Sincerely,

Dale A. Blasi, PhD Extension Beef Specialist

Department of Animal Sciences and Industry

De N Blaci

College of Agriculture

THANK YOU

We would like to express a special "THANK YOU" to Merck Animal Health for their support of today's educational program and activities for the beef stocker segment. With their financial assistance, we are able to deliver the caliber of programming that today's events have in store for you. Please take a moment to stop by their display to see the line of products that they have to offer.

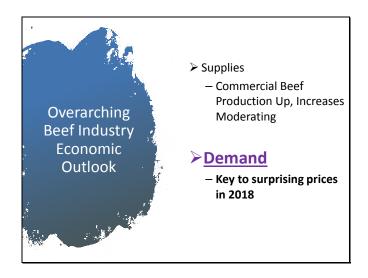
Beef Stocker Field Day 2018 September 20, 2018 KSU Beef Stocker Unit

9:30 a.m.	Registration/Coffee
10:15 a.m.	Introductions
10:30 a.m.	The Role of Stocker Producer Expectations in Cattle Buying Decisions Glenn Tonsor, Ph.D., Kansas State University
11:15 a.m.	Producer Panel: Why Silage Fits in My Growing Diets Frank Harper, Sedgwick, Kansas Gary Burgess, Wamego, Kansas Gary Bacon, Minneapolis, Kansas Keith Bolsen, Ph.D., Emeritus Professor, Kansas State University Moderator: Wes Ishmael, Contributing Editor, BEEF Magazine
12:15 p.m.	Barbecue Brisket Lunch- View Posters
1:00 p.m.	An Update on Pain Management in Cattle Hans Coetzee, DVM, Kansas State University
2:00 p.m.	Quality Stocker Production Considerations Justin Sexten, Ph.D., Certified Angus Beef
2:45 p.m.	Break
3:00 p.m.	The Tech Revolution, Wall Street, Baseball and the Cattle Industry Dane Kuper, CEO, Performance Livestock Analytics
3:45 p.m.	Rethinking BRD Diagnosis Jason Nickell, DVM, Merck Animal Health
4:15 p.m.	Livestock Theft in Kansas Kendal Lothman, Special Agent, Office of the Kansas Attorney General
4:45 p.m.	Treatment Failures that are not BRD Related A.J. Tarpoff, DVM, Kansas State University
5:30 p.m.	Cutting Bull's Lament 2018

Notes - Notes -- Notes

The Role of Stocker Producer Expectations in Cattle Buying Decisions

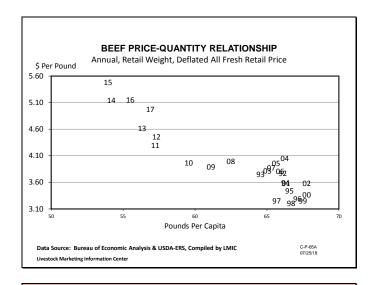
Glynn Tonsor, Ph.D. Kansas State University


Beef Cattle Outlook & Role of Producer Expectations in Buying Decisions

Glynn T. Tonsor
Dept. of Agricultural Economics
Kansas State University
gtonsor@ksu.edu
Twitter: @TonsorGlynn

- ➤ Supplies
 - Commercial Beef Prod.Up, IncreasesModerating
 - +6.4% in 2016
 - +3.8% in 2017
 - +3.3% in 2018 (?)
 - +1.7% in 2019 (?)
 - +0.8% in 2020 (?)

- <u>Demand Illustration: Q3.2018</u>
 - ➤ Production +2%
 - ➤ Yearling Prices +1%
 - ➤ Calf Prices +2%
 - Exports are key & yet ongoing arena of uncertainty


All-Fresh Beef Retail Demand Index

(Quarterly, Price-Index Approach, 1990=100)

Q2.2018: +0.4%

vs. Q2.2017

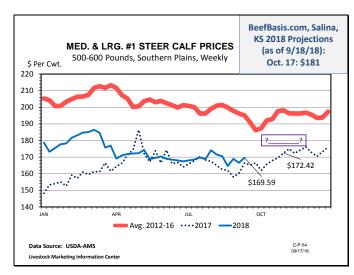
http://agmanager.info/livestock-meat/meat-demand

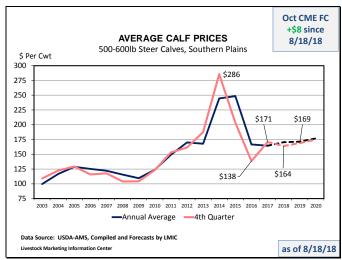
Demand is **NOT** Per Capita Consumption

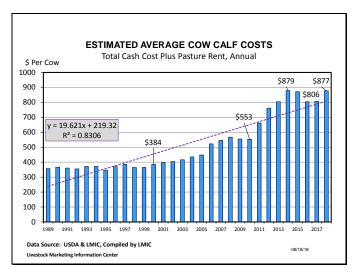
2013 Beef Demand Determinants Study

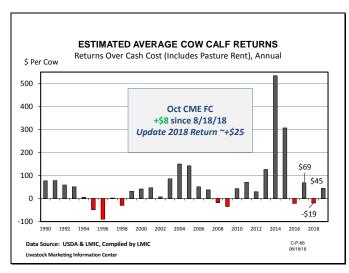
http://www.beefboard.org/evaluation/130612demanddeterminantstudy.asp

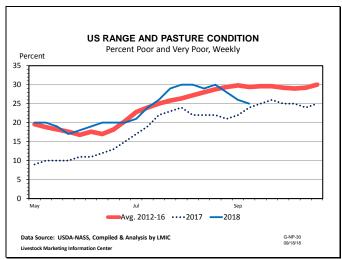
Assessing Beef Demand Determinants

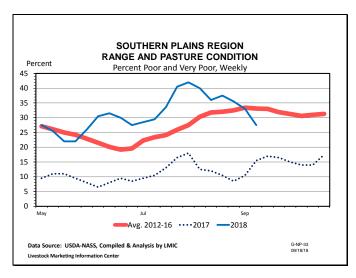

Glynn T. Tonsor, Jayson L. Lusk, and Ted C. Schroeder

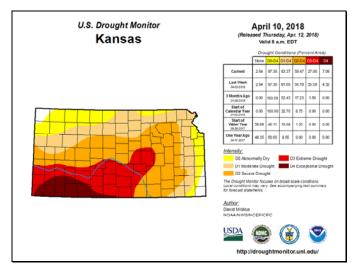

Checkoff Program Update February 1, 2018

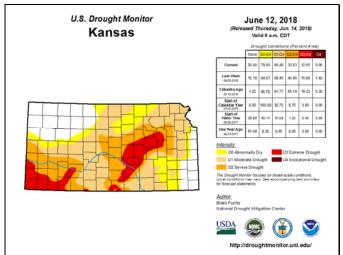

Presentation at 2018 Cattle Industry Convention
Phoenix, AZ

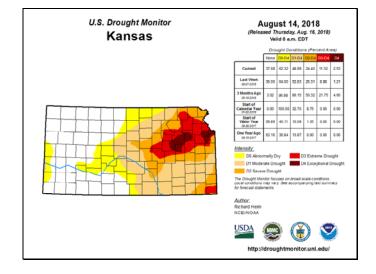

Full Project Report

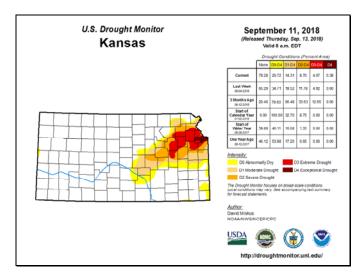

https://www.beefboard.org/news/180131Tonsor-beef-demand-print.asp

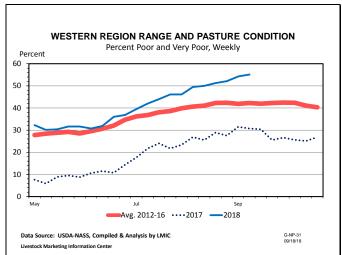


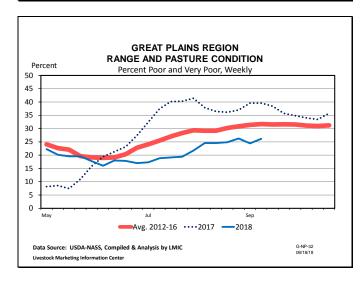


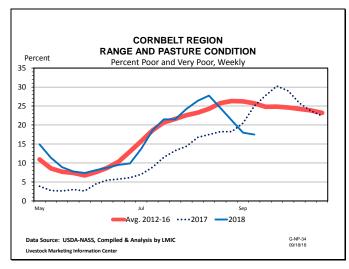


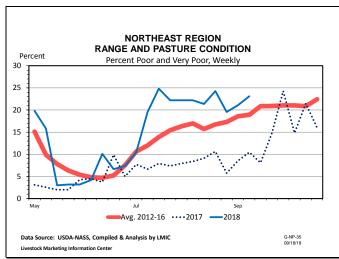


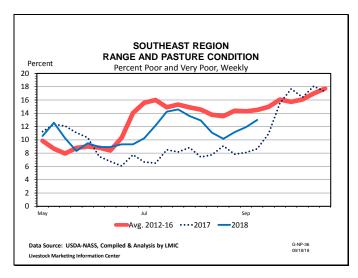


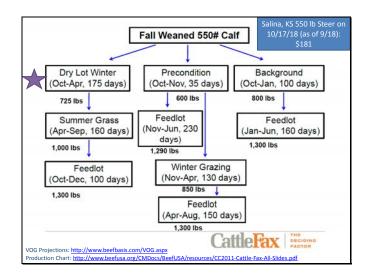


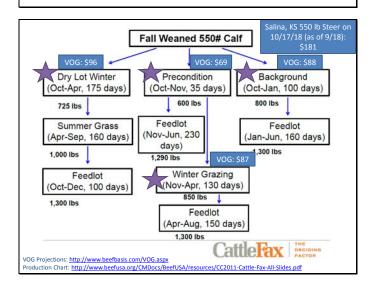








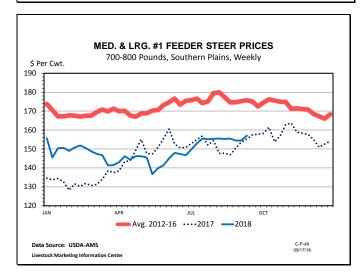




Economic Outlook Overview: Stockers

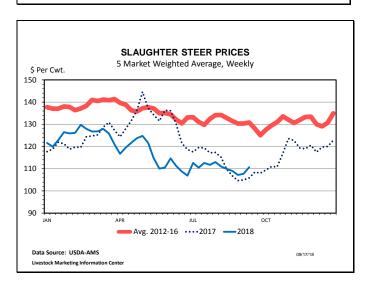
http://www.beefbasis.com/ForecastingTools/ValueofGain/tabid/1132/Default.aspx

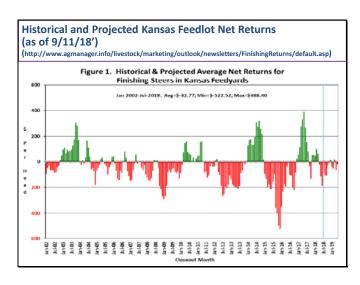
- Salina, KS 9/18/18 Dry Lot Winter, 175 DOF Case:
 - Buy 550 lb steer on 10/17/18 (\$181)
 - Sell 725 lb steer on 04/10/19 (\$161) {ADG 1.0}
 - VOG: \$96/cwt


Economic Outlook Overview: Stockers http://www.beefbasis.com/ForecastingTools/ValueofGain/tabid/1132/Default.aspx • Salina, KS 9/18/18 Preconditioning, 35 DOF Case: — Buy 550 lb steer on 10/17/18 (\$181) — Sell 600 lb steer on 11/21/18 (\$172) {ADG 1.43} • VOG: \$69/cwt — NOTE THIS DOES NOT REFLECT ANY "PRECONDITIONED" CLAIM PREMIUM	
Economic Outlook Overview: Stockers http://www.beefbasis.com/ForecastingTools/ValueofGain/tabid/1132/Default.aspx • Salina, KS 9/18/18 Backgrounding, 100 DOF Case: — Buy 550 lb steer on 10/17/18 (\$181) — Sell 800 lb steer on 01/30/19 (\$152) {ADG 2.4} • VOG: \$88/cwt	
Economic Outlook Overview: Stockers http://www.beefbasis.com/ForecastingTools/ValueofGain/tabid/1132/Default.aspx • Salina, KS 9/18/18 Winter Grazing, 130 DOF Case: — Buy 600 lb steer on 11/21/18 (\$172) — Sell 850 lb steer on 03/27/19 (\$147) {ADG 2.0} • VOG: \$87/cwt	

Economic Outlook Overview: Stockers

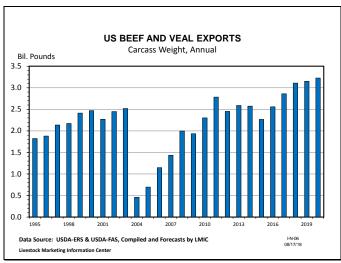
http://www.beefbasis.com/ForecastingTools/ValueofGain/tabid/1132/Default.aspx

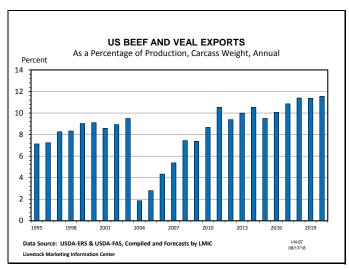

- Salina, KS 9/18/18 <u>Preconditioning + Winter Grazing</u>, 165 DOF Case:
 - Buy 550 lb steer on 10/17/18 (\$181)
 - Sell 850 lb steer on 03/20/19 (\$147) {ADG 1.9}
 - VOG: \$84/cwt

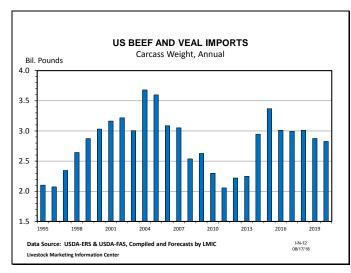


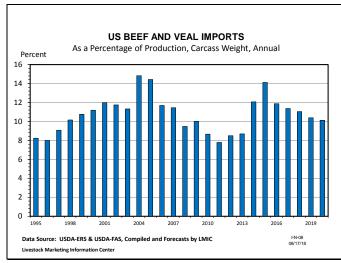
Economic Outlook Overview: Feedlots

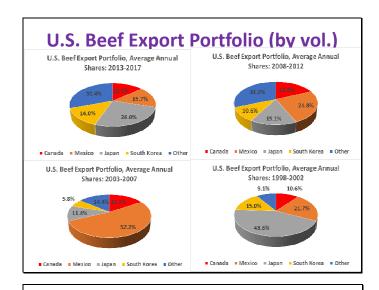
- 2017 was better than anticipated
- 2018 has been rougher
 - Q4 return prospects have improved


	har u				9/11/	- /			,
	(http://www	agmanag		July 18'		/newsletters/	FinishingRetu	rns/default.as	p)
Table 1 Pro	siacted Value	c for Einic	0.000	in Kansas Fee	024 127014	Sieei			
Closeout Mo-Yr						Feeder Price	Breakeven FCOG**	Breakeven Fed Price	Breakeven Feeder Pric
Aug-18	-104.20	81.98	110.81	108.63	2.18	147.01	65.79	118.33	132.98
Sep-18	-108.96	83.04	109.79	109.35	0.44	143.54	66.15	117.50	129.35
Oct-18	-31.30	83.32	114.75	114.05	0.70	137.33	77.90	116.94	133.66
Nov-18	-9.72	82.54	114.96	114.05	0.91	141.02	81.08	115.63	139.78
Dec-18	14.87	83.11	120.01	118.35	1.66	146.93	85.35	118.97	148.86
Jan-19	-38.29	83.43	120.16	118.35	1.81	152.32	77.48	122.85	147.40
Feb-19	-51.85	84.36	121.12	119.93	1.20	156.16	76.33	124.83	149.28
Mar-19	18.75	83.02	123.64	119.93	3.71	154.22	85.88	122.28	156.80
Apr-19	-63.24	83.64	116.16	112.95	3.21	150.04	73.77	120.77	141.39
May-19	-20.08	82.96	121.59	112.95	8.64	150.14	79.61	123.02	147.63




			% Chg.	Average	% Chg.	Comm'l	% Chg
2018 1	Year	Comm'l	from	Dressed	from	Beef	from
1	Quarter	Slaughter	Year Ago	Weight	Year Ago	Production	Year Ago
II	2018				Ť		
III	ı	7,877	2.1	820.8	0.5	6,465	2.6
IV 8,428 3.5 832.6 0.6 7,017 4.1 Year 33,124 2.9 817.0 0.4 27,063 3.3 2019 I 7,892 0.2 825.7 0.6 6,517 0.8 II 8,503 0.9 807.7 1.2 6,868 2.1 III 8,540 1.7 826.6 1.2 7,059 2.9 IV 8,474 0.5 837.0 0.5 7,092 1.1 Year 33,409 0.9 824.2 0.9 27,536 1.7 2020 I 8,059 2.1 829.6 0.5 6,686 2.6	II	8,424	4.3	798.2	0.6	6,724	4.9
Year 33,124 2.9 817.0 0.4 27,063 3.3 2019 <td< td=""><td>III</td><td>8,395</td><td>1.7</td><td>816.8</td><td>0.1</td><td>6,857</td><td>1.8</td></td<>	III	8,395	1.7	816.8	0.1	6,857	1.8
2019	IV	8,428	3.5	832.6	0.6	7,017	4.1
1 7,892 0.2 825.7 0.6 6,517 0.8 11 8,503 0.9 807.7 1.2 6,868 2.1 111 8,540 1.7 826.6 1.2 7,059 2.9 1V 8,474 0.5 837.0 0.5 7,092 1.1 Year 33,409 0.9 824.2 0.9 27,536 1.7 2020 1 8,059 2.1 829.6 0.5 6,686 2.6	Year	33,124	2.9	817.0	0.4	27,063	3.3
II	2019						
III	- 1	7,892	0.2	825.7	0.6	6,517	0.8
IV 8.474 0.5 837.0 0.5 7,092 1.1 Year 33,409 0.9 824.2 0.9 27,536 1.7 2020 I 8,059 2.1 829.6 0.5 6,686 2.6	II .	8,503	0.9	807.7	1.2	6,868	2.1
Year 33,409 0.9 824.2 0.9 27,536 1.7 2020 1 8,059 2.1 829.6 0.5 6,686 2.6	III	8,540	1.7	826.6	1.2	7,059	2.9
2020 I 8,059 2.1 829.6 0.5 6,686 2.6	IV	8,474	0.5	837.0	0.5	7,092	1.1
I 8,059 2.1 829.6 0.5 6,686 2.6	Year	33,409	0.9	824.2	0.9	27,536	1.7
. ,,,,, =, ,,,,,	2020						
II 8,513 0.1 812.2 0.6 6,914 0.7	ı	8,059	2.1	829.6	0.5	6,686	2.6
	II	8,513	0.1	812.2	0.6	6,914	0.7
III 8,489 -0.6 831.4 0.6 7,058 0.0	III	8,489	-0.6	831.4	0.6	7,058	0.0
IV 8,447 -0.3 841.2 0.5 7,106 0.2	IV	8,447	-0.3	841.2	0.5	7,106	0.2


	Live Sltr.	Live Sltr. % Chg.		er Price
Year	Steer Price	from	Southern	Plains
Quarter	5-Mkt Avg	Year Ago	7-800#	5-600#
2018				
ı	125.60	2.1	148.73	180.01
II	116.72	-12.1	144.52	170.11
III	111-112	-0.9	154-155	168-169
IV	115-117	-1.6	148-151	162-166
Year	117-118	-3.3	149-150	170-172
2019				
ı	119-122	-4.1	147-151	168-173
II	116-120	1.1	148-153	172-178
III	108-113	-0.9	145-151	169-174
IV	113-119	0.0	145-154	165-173
Year	114-118	-1.3	147-151	169-174
2020				
ı	118-125	0.8	145-155	171-180
II	116-124	1.7	147-158	174-184
III	110-119	3.6	147-159	173-185
IV	114-124	2.6	146-159	169-181
Year	117-121	2.6	149-155	173-181



USDA Long-Term projections

Feb. 2018 report (http://www.usda.gov/oce/commodity/projections/)

Item	2016	2017	2018	2019	2020	2027
Beef	55.6	57.3	59.2	60.9	60.9	59.0
Pork	50.1	50.4	52.1	52.2	51.9	52.0
Total red meat	107.0	109.0	112.6	114.4	114.1	112.2
Broilers	89.8	91.0	91.8	91.6	92.4	92.2
Total poultry	107.6	108.8	109.6	109.2	109.9	109.3
Red meat & poultry	214.6	217.8	222.2	223.6	224.0	221.5
Note: Totals may not add due to rounding.						

46

USDA Long-Term projections Feb. 2018 report (http://www.usda.gov/oce/commodity/projections/) 2019 would be highest for beef since 2009 er capita meat consumption, retail weight 2016 2017 2027 ltem 2018 2019 2020 Beef 55.6 57.3 59.2 60.9 60.9 59.0 Pork 50.1 50.4 52.1 52.2 51.9 52.0 Total red meat 107.0 109.0 112.6 114.4 114.1 112.2 89.8 92.4 107.6 108.8 109.6 109.2 109.9 109.3 Total poultry 222.2 217.8 223.6 224.0 221.5 214.6 Red meat & poultry Note: Totals may not add due to rounding. Year Total Red Meat & Poultry 1995 205.4 2000 214.4 2005 219.7 2010 207.5 47 2014

USDA Long-Term projections

Feb. 2018 report (http://www.usda.gov/oce/commodity/projections/)

Per capita meat consumption, retail weight						
ltem	2016	2017	2018	2019	2020	2027
Beef	55.6	57.3	59.2	60.9	60.9	59.0
Pork	50.1	50.4	52.1	52.2	51.9	52.0
Total red meat	107.0	109.0	112.6	114.4	114.1	112.2
Broilers	89.8	91.0	91.8	91.6	92.4	92.2
Total poultry	107.6	108.8	109.6	109.2	109.9	109.3
Red meat & poultry	214.6	217.8	222.2	223.6	224.0	221.5
Note: Totals may not add due to rounding.						

<u>Projections INCLUDE trade dependency,</u> PRESUME no China pork tariffs, etc.

Wrap-Up

• Broad Profitability Outlook

➤ Cow-calf:

- Converging toward Long-Term Levels
- Situation Better than Expected, Hope Demand's Role is Recognized!

Stocker

- Margins vary widely across situations
 - Drought/feasibility impact likely substantial for many attendees

➤ Feedlot:

- 2017 offered notable equity recovery
- Q4 2018 has improved

49

Wrap-Up

- Broad Profitability Outlook
 - ➤ Supply side factors are "well established"
 - ➤ Demand factors are key and uncertain
 - > What will be beef (and meat broadly) export situation?
 - ➤ When will next U.S. recession occur?

50

Producer Expectations in Cattle Buying

• Suppose in OCT a producer could buy 1 of 3 lots of calves with a planned FEB sale:

Probability	ADG 1	ADG 2	ADG 3
20%	<1.5	<1.7	<1.9
60%	1.5-2.3	1.7-2.5	1.9-2.7
20%	>2.3	>2.5	>2.7

Journal article available online: https://academic.oup.com/ajae/article/100/4/1120/5045159

Stocker Research of Note: Producer Expectations in Cattle Buying

- Mean Willingness to Pay (Fall 2014):
 - -\$42/cwt more for ADG2 than ADG1
 - \$1.77/lb for each of the additional 24 lbs
 - -\$26/cwt more for ADG3 than ADG2
 - \$1.08/lb for each of the additional 24 lbs
 - Loss aversion exist:

> Producers value "avoiding a bad situation" more than "improving upon a good situation."

Stocker Research of Note: Producer Expectations in Cattle Buying

- Average experiences buying OCT calves & sell in FEB
 - Avg ADG across all lots/group over past 10 years: 1.9
 - Worst ADG across all lots/group over past 10 years: 1.2
 - Best ADG across all lots/group over past 10 years: 2.5
- How do past experiences influence buying decisions of individual stocker operators?

Stocker Research of Note: Producer Expectations in Cattle Buying • If potential buyers view available cattle superior to their best personal experience: Producers will NOT pay premium for higher-ADG cattle • Producers have to "see it to believe it" before they will pay-up for high-quality cattle **Stocker Research of Note: Producer Expectations in Cattle Buying** Implications - Helps explain "similar cattle" having differing prices in different markets Sellers of high-performing cattle need to find markets comprised of buyers with corresponding experience **Stocker Research of Note: Producer Expectations in Cattle Buying** Implications - Which came first, the chicken or the egg??? • University trials/field days may provide this "experience"

indirectly

• Information on past performance (genetics etc.) has value in reducing risk to possible buyers & perhaps can substitute

More information available at:

This presentation will be available in PDF format at: http://www.agmanager.info/contributors/tonsor

> Glynn T. Tonsor Professor Dept. of Agricultural Economics Kansas State University Email: gtonsor@ksu.edu Twitter: @TonsorGlynn

> > 57

Utilize a Wealth of Information Available at AgManager.info

About AgManager.info

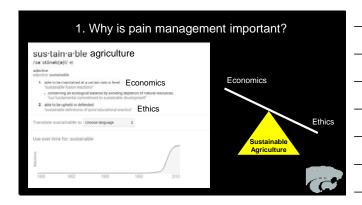
AgManager.info website is a comprehensive source of information, analysis, and decision-making tools for agricultural producers, agribusinesses, and others. The site serves as a clearinghouse for applied outreach information emanating from the Department of Agricultural Economics at Kansas State University. It was created by combining departmental and faculty sites as well as creating new features exclusive to the AgManager.info site. The goal of this coordination is to improve the organization of web-based material and allow greater access for agricultural producers and other clientele.

Receive Weekly Email Updates for AgManager.Info:

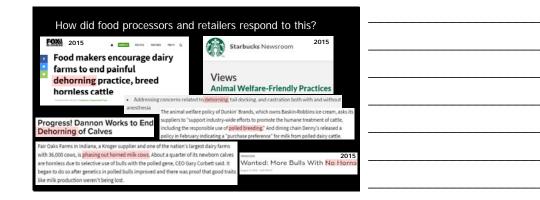
http://www.agmanager.info/about/ contact-agmanagerinfo

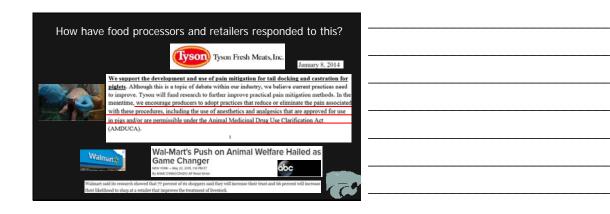
Notes – Notes -- Notes

An Update on Pain Management in Cattle


Hans Coetzee, DVM Kansas State University

What are we going to discuss today?


- Why is pain management in beef cattle important?
- What are the challenges associated with managing pain in beef cattle?
- What options are available for managing pain in cattle (and do they work)?



Take Home Message

Pain management is becoming necessary component of sustainable beef production

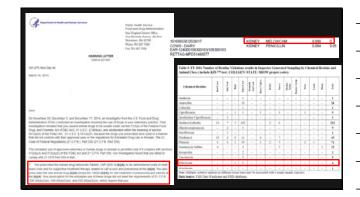
2. Why is managing pain in livestock challenging?

- 1. Pain recognition is difficult in stoic species
- 2. Until recently, no compounds were specifically approved by FDA for analgesic use
 - \rightarrow Banamine® Transdermal is only labeled for pain associated with foot rot
 - → Analgesia for dehorning and castration is still ELDU under AMDUCA
- 3. Time delay between drug administration and onset of activity (e.g. local $\,$ anesthesia)
- 4. Inconvenient routes of drug administration (IV)
- 5. Short drug elimination half-lives necessitate frequent drug administration
- 6. Cost of drugs and meat/milk withhold periods

Implications of extra label drug use (ELDU) for pain management

- ELDU is permitted only by or under the supervision of a
- ELDU is allowed only for FDA approved animal and human
- A valid Veterinarian/Client/Patient Relationship is a prerequisite for all ELDU.
- ELDU for therapeutic purposes only (animal's health is suffering or threatened). Not drugs for production use.
 ELDU is not permitted if it results in a violative food residue, or any residue which may present a risk to public health.

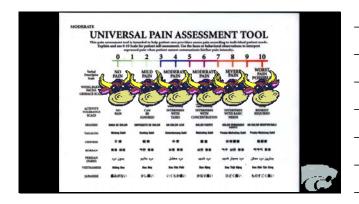
http://www.avma.org/reference/amduca/am

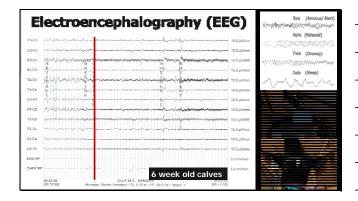


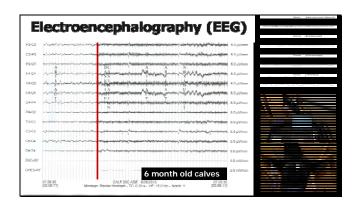
Top 10 Residue Violations Dairy Cows (FY 2017)

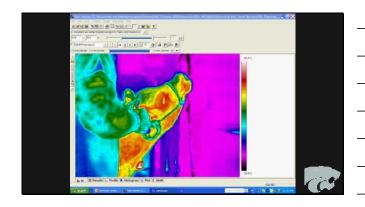
Residue Name	COWS - DAIRY
Desfuroylceftiofur	179
Penicillin	95
Sulfadimethoxine	51
Flunixin	27
Ampicillin	25
Sulfamethazine	17
Gentamicin	9
Tilmicosin	6
Dihydrostreptomycin	6
Meloxicam	6


In the absence of an approval, there is a **ZERO** TOLERANCE for meloxicam residues in tissues in the **USA**







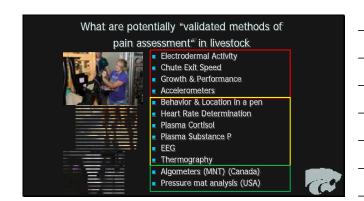


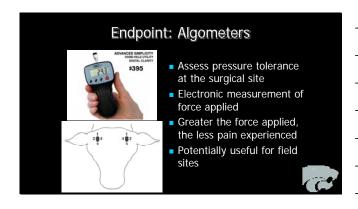
Take Home Message

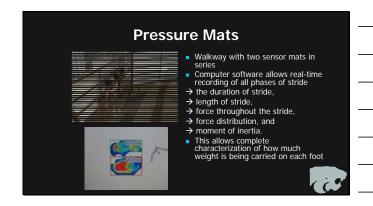
Performing painful production practices earlier in life minimizes the neuroendocrine response to a painful procedure

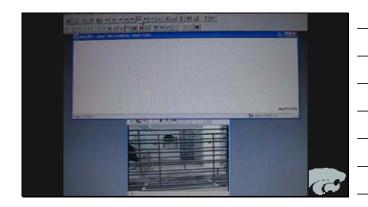
Take Home Message

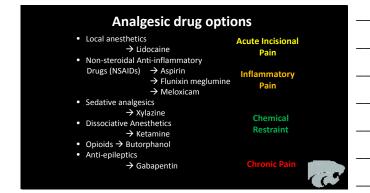
Surgical castration without pain management hurts!

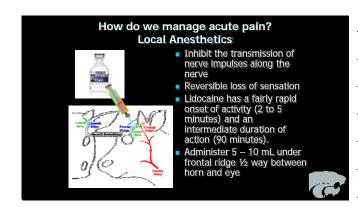


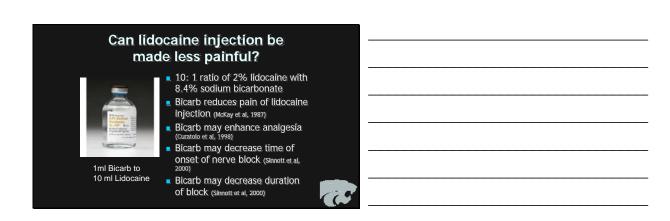

Validation of Pain Assessment Tools

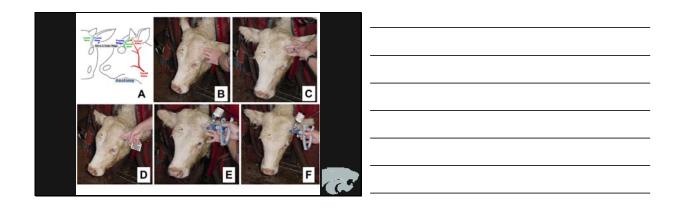

duitance for Industry

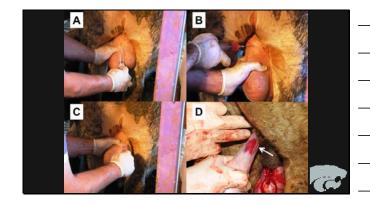

- Sensitive and specific to pain vs. stress?
- Robust and repeatable?
- Usefulness for determining clinical <u>field</u> effectiveness
- → Does it work in the field like it works in the lab?
- Can the study be reconstructed using the raw data?







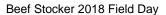


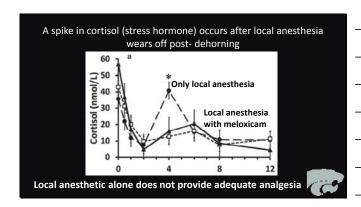


Pro's and cons of local anesthesia

Pros

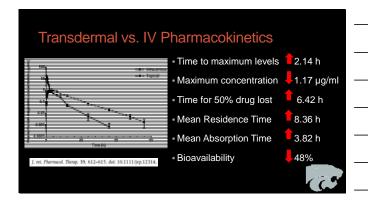
- Inexpensive
- Reduces procedural pain
- Reduces risk of injury to both the operator and the calf
- Reduces stress

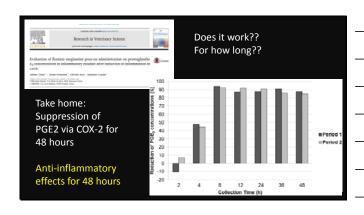

Cons

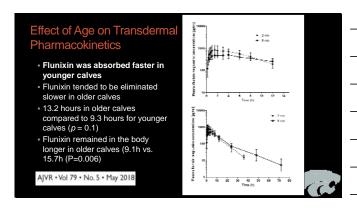

- Takes 2 5 minutes to take effect
- Requires some training to administer
- The effect only lasts for a few hours after which the pain returns

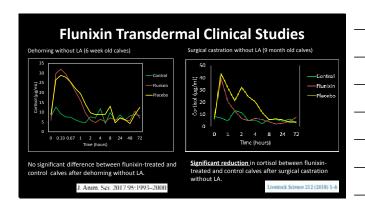
Take Home Message

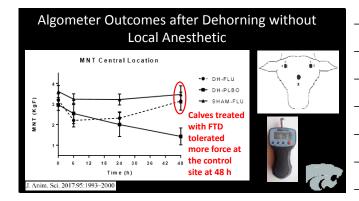
1 mL of 8.4% sodium bicarbonate added to 10 mL lidocaine will reduce the pain of injection and may reduce the time to onset of the block

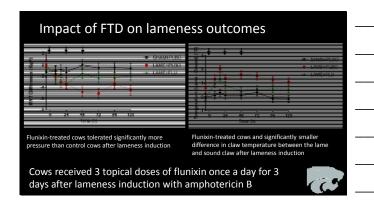


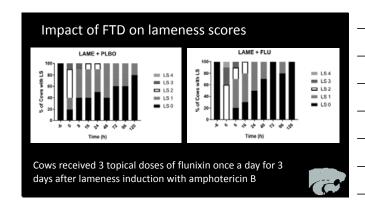

Drug	Approved Species	Indications	Dose (Cattle)	T ½ in cattle	Withhold period
Flunixin meglumine (Merck®)	Cattle, horses and pigs	Antipyretic, Anti- inflammatory. BRD and mastitis Foot rot pain	2.2 mg/kg IV 3.3 mg/kg Topical	3-8 h Longer in topical	Meat- 4 days (IV) Meat- 8 d (topical) Milk- 36 hours (IV)
Phenylbutazone	Horses and dogs	Anti-inflammatory	4 mg/kg IV ONLY!	40 – 55 h	Not approved in cattle in the USA
Ketoprofen (Merial ®)	Horses and dogs	Anti-inflammatory	1.5 mg/kg IV, IM	0.42 h	Not approved in cattle in the USA
Aspirin	No FDA approval Horses and Cattle	Reduction of fever Relief of minor muscle aches and joint pain	50 – 100 mg/kg PO Oral F < 20%	0.5 h (IV salicylate)	No formal FDA approval Not for use in lactating cattle
Carprofen (Zoeitis®)	EU approval in cattle Dogs	Adjunctive therapy of acute respiratory disease and mastitis	1.4 mg/kg bodyweight IV or SC Oral Tablets		Not approved in cattle in the USA EU- 21 days (Meat) 0 days (Milk)
Meloxicam (Boehringer Ingelheim®)	EU and Canadian approval in cattle Dogs and cats	Adjunctive for BRD; diarrhea and acute mastitis(EU). Analgesia after disbudding (Can)		27 hours (Range: 19.97 – 43.29 hours)	Not approved in cattle in the USA. 15 days EU and 20 d Canada. FARAD 21 days (Meat)
Firocoxib (Merial ®)	Dogs and horses	Anti-inflammatory	0.5 mg/kg (PO) Oral F=98.4%	18.8 hours (Range: 14.2 – 25.5 hours)	Not approved in cattle in the USA or EU.











Does pain have an effect on drug behavior? • Flunixin was eliminated slower in calves subjected to a painful procedure (dehorning). • 10.09 hours compared to 7.16 hours for the control group (*p* = 0.0202) • Inflammatory mediators were significantly lower in the pain group at 48 (*p* = 0.0092) and 72 hours (*p* = 0.0287).

A study examining Banamine Transdermal at arrival

- 384 cattle arrived from Tennessee to KSU Stocker Unit in Manhattan, KS in 4 truck loads over 10 days in October 2017
- 199 bulls and 185 steers
- Distributed by arrival weight
- 12 calves /pen (6 castrated bulls and 6 steers) over 32 pens

Banamine Transdermal

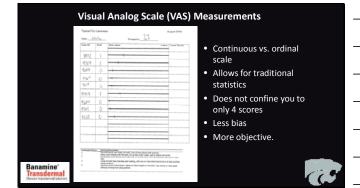
Materials and Methods

Pens were randomly assigned to treatments within lot as follows:

Group 1: Calves received Zuprevo 18% (Tildipirosin, Merck Animal Health) at 4 mg/kg (1 mL/100 lb.) body weight as metaphylaxis for BRD

<u>Group 2:</u> Calves received Zuprevo 18% at 4 mg/kg (1 mL/100 lb.) in combination with Banamine Transdermal at 3.33 mg flunixin/kg bodyweight (equivalent to 1 mL/15 kg bodyweight).

 Treatments were administered at the time of processing, approximately 12-24 h after arrival at the feedlot.


Banamine' Transdermal

Outcome Variables

- Individual animal weights by lot and treatment were recorded on day 0, day 14 and day 63.
- Pen Weights were recorded weekly
- <u>Visual analog scale (VAS)</u> assessment was conducted by two trained evaluators blinded to treatment allocations
- →3 calves received as steers and 3 calves received as bulls and castrated on arrival/pen.
- →VAS assessments were taken every 12 hours starting 12 hours after being processed onto the study for 6 days.

Banamine' Transdermal

Outcome Variables

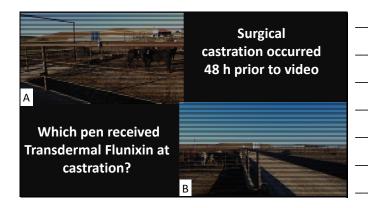
- <u>Accelerometers</u> were placed on 40 animals (10 per study lot) on the day of enrollment.
- Accelerometers were placed on the left rear legs.
- Steps, standing up and lying bouts, and motion index data was collected via accelerometers.

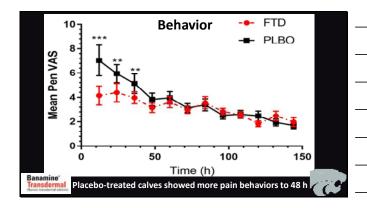
Banamine* Transdermal

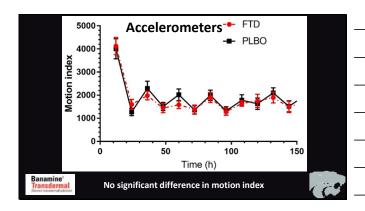
BRD Diagnosis

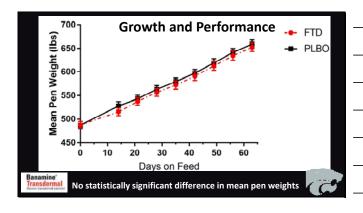
- Animals were observed twice daily for signs of BRD
- Rectal temperature and a clinical illness score (CIS) were recorded such that a CIS of
- 1; is a normal healthy animal,
- 2; slightly ill with mild depression or gauntess,
- 3; moderately ill demonstrating severe depression/labored breathing/nasal or ocular discharge, and
- 4; severely ill and near death showing minimal response to human approach.

Transdermal




BRD Treatment


- Animals pulled from the pen with a rectal temperature ≥ 40 °C and demonstrating a CIS ≥ 2 were treated following label instructions with the following compounds:
- 1st Treatment: Florfenicol (Nuflor, Merck Animal Health, Madison, NJ) administered at 6 ml/100 lbs BW. (3 day PTI)
- 2nd Treatment: Enrofloxacin (Baytril 100°; Bayer Animal Health) at a dose of 5.7 mL per 100 lb BW. (3 day PTI)
- 3rd Treatment: Oxytetracycline (300 PRO LA; Norbrook Animal Health) at 4.5 mL/ 100 lbs. at which time animals will be considered chronic and will be removed from the trial.


Banamine^{*} Transdermal

Results

	Lot #	Zuprevo and Banamine	Zuprevo Only	Treatment
Percentage Pulled		7.29%	11.45%	
	244	17.1	14.8	
Days to 1st Pull	244			
SEM		2.9	2.5	
Percentage Pulled		23.96%	17.71%	
Days to 1st Pull	245	8.4	11.2	
SEM		1.9	2.1	P = 0.85
Percentage Pulled		33.33%	30.21%	
Days to 1st Pull	246	14.3	12.4	
SEM		1.7	1.7	
Percentage Pulled		31.25%	19.79%	
Days to 1st Pull	247	11.1	9.6	
SEM		1.7	2	

Take Home Messages

- Topical flunixin is convenient to administer
- Topical flunixin appears to last up to 48 h after a single dose
- Topical flunixin is effective at mitigating many of the negative physiological and behavioral effects of castration, dehorning and lameness

Pro's and cons of NSAIDs

Pros

- Inexpensive
- Reduces inflammatory pain → long acting
- Reduces stress
- Reduces impact of painful procedure on animal behavior

Cons

- ELDU requires veterinary oversight
- Meat withhold periods must be observed
- Most effective when administered with local anesthesia

Final Thoughts

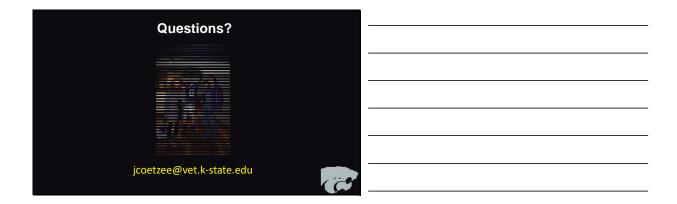
Scientists should recognize that, when research findings related to animal welfare are equivocal or remain unsettled, the question of how animals ought to be cared for and treated will then shift to **the realms**

of ethics and social values

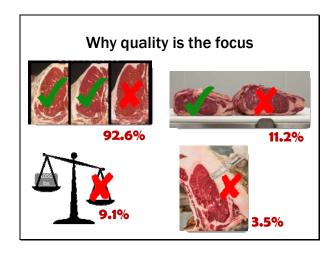
Dr. Stanley Curtis, Feedstuffs Oct. 2007

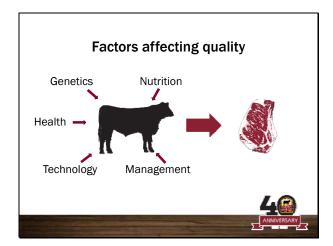
Acknowledgements

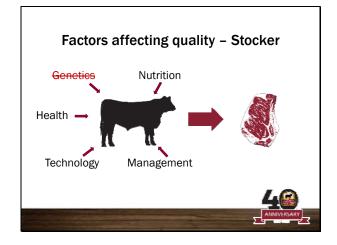
- This research was funded by USDA National Institute of Food and Agriculture: Food Research Initiative Competitive Grant no. 2008-35204-1923 and 2013-67015-21332
- Merck Animal Health for supporting the Banamine Transdermal transport work



United States Keperiment of Aceleritors


Notes - Notes -- Notes


Quality Stocker Production Considerations


Justin Sexten, Ph.D. Certified Angus Beef

What stocker "treatments" carryover

- Placement weight
 - Age
 - •ADG
- Nutrition
- •Implant protocols
- Health challenges

Galyean et al., 2011; Reuter and Beck, 2013

For each day of age at feedyard entry

• Reduced DOF by 0.3 days

 $(R^2 = 0.52)$

• Reduced feedyard gain by 0.79 lb

 $(R^2 = 0.19)$

• Marbling score decreased by 0.31

 $(R^2 = 0.04)$

• HCW increased by 0.18 lb

 $(R^2 = 0.02)$

Reuter and Beck, 2013

For each 100 pounds gained prior to feedyard entry

• Reduced DOF by 9 days

 $(R^2 = 0.24)$

• Reduced Gain: Feed by 0.009 lb

 $(R^2 = 0.17)$

• Reduced feedyard gain by 35 lb

 $(R^2 = 0.12)$

• HCW increased by 27 lb

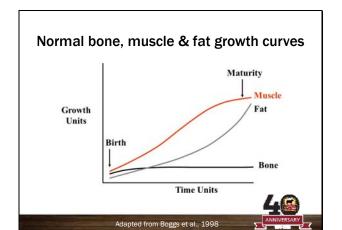
 $(R^2 = 0.11)$

Marbling score was unaffected

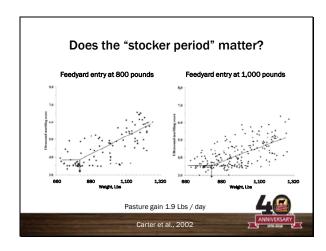
Reuter and Beck, 2013

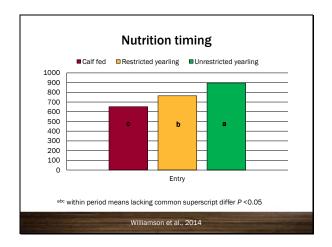
Nutrient source

- Forage type and grazing system influence placement weight rather than a direct impact on feedyard performance
- Meta-analysis (16 Exp) suggests carcass merit is not influenced by dietary starch level in backgrounding diets

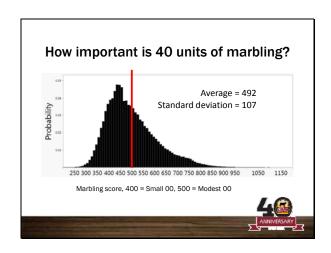

Reuter and Beck, 2013; Lancaster et al., 2014

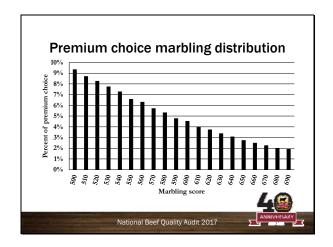
Nutrient level

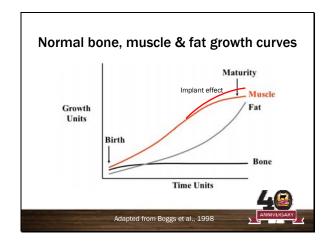

Item	Mean	Min	Max
Initial BW, Lbs	450.2	409.7	612.3
Final BW, Lbs	763.7	509.9	991.2
ADG, Lbs / d	1.70	0.33	3.7
Marbling score	417	266	535

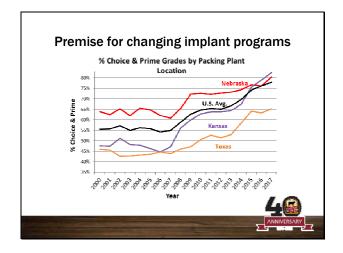

 Meta-analysis (29 Exp) suggests marbling score is not influenced by ADG during stocker phase

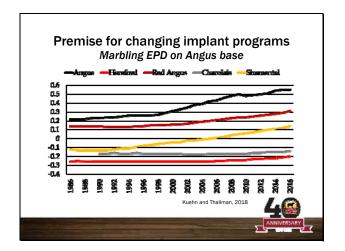
Krehbiel et al., 2012; Lancaster et al., 2014




Beef Stocker 2018 Field Day




Item	Calf	Restricted	Unrestricted	P =
Growing ADG, Lb /d	3.6ª	1.6°	2.3 ^b	< 0.01
Marbling score*	604ª	553⁵	577 ^{ab}	< 0.01
% Choice	85.7	78.0	85.8	0.35
% Premium choice	84.9ª	35.7°	55.0b	< 0.01
abc within row means lacking common superscript differ P < 0.05 * Marbling scale adjusted to 400 = small, 500 = modest for consistency				



Implant timing				
Item	Feedyard	Stocker	P =	
ADG, lb / day	2.35	2.64	< 0.01	
HCW, Lbs	720	718	0.92	
Back fat, inches	0.59	0.55	0.20	
Marbling score	490	466	0.06	
% Choice	86.1	80.3	0.25	
% Premium choice	60.8	56.3	0.44	
			4	

Considerations for increased implant duration or level

- Period length is key
 - Long term implants used in short term did not increase performance
- In calf-feds increasing implant potency earlier in the feeding period did not improve ADG and depressed quality grade

Farney and Corrigan 2018; Hilscher et al., 2016; Oney et al., 2018

Health

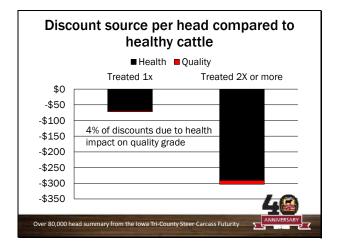
- •Single largest challenge to individual
 - Performance
 - · Carcass merit
- Metaphalaxis
 - Production challenge
 - Consumer view

Consumer opposition to antibiotic use Treatment

- Production benefit
 - Daily monitoring
 - Early diagnosis
- Animal welfare

_				_
Reef	Stocker	2018	Field	Dav

Consumer opposition to antibiotic use Prevention


- Production benefit
 - •Improved ADG and efficiency
 - •Improved digestive health
- •Environmental benefit
 - •Greenhouse grass reduction
 - •Efficient resource use

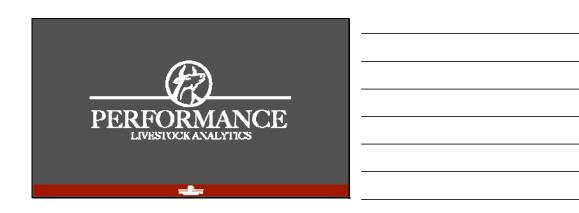
Consumer opposition to antibiotic use Prevention

Item	No Metaphylaxis	Metaphylaxis	P =
All in ADG, lbs / d	3.2	3.4	< 0.01
BRD morbidity, %	14.3	3.9	0.02
BRD mortality, %	3.1	1.2	0.03
Marbling score	394	395	0.92
% Choice and Prime	47.2	47.1	0.74

Beef Stocker 2018 Field Day

Opportunities to reduce antibiotic use

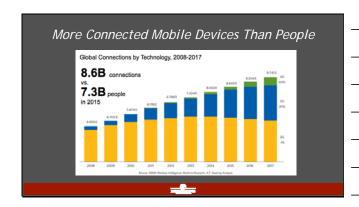
- •Minimize transit stress
- •Evaluate arrival procedures
- Optimize nutrition
- Consider alternatives

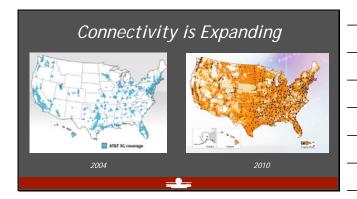


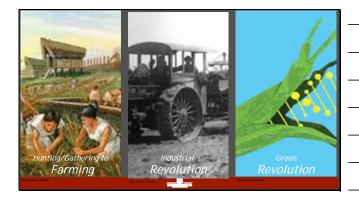
Notes - Notes -- Notes

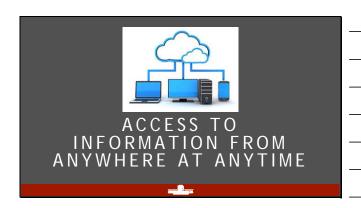
The Tech Revolution, Wall Street, Baseball and the Cattle Industry

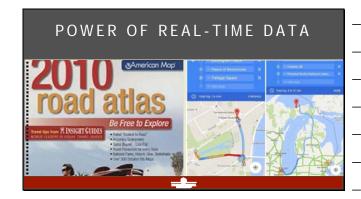
Dane Kuper, CEO Performance Livestock Analytics



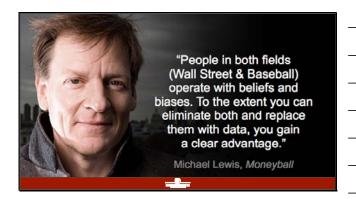

World Population Clock
7.6 Billion People


CURRENT MARKET SITUATION Volatile Market Low Margins Capital Intense




WHY ARE WE NOW ENTERING INTO THE DATA REVOLUTION?

COST OF DATA STORAGE DOWN 98% IN THE LAST 10 YEARS



BETTERING THE BOTTOMLINE IN OTHER INDUSTRIES

How can we use data and technology to become more competitive?

BUY CATTLE BASED ON DATA, NOT YOUR GRANDPA'S BIAS

Data can tell us how a particular ranches cattle has preformed

Data can tell us our true cost of gain on steers vs heifers

Data can tell us when is the optimum time to buy 500lb vs 850lbs

Data can tell us we can bid more or that a bid is not worth the cattle on sale

Know your history

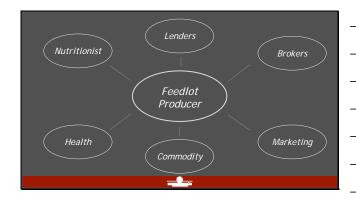
BE ALERTED WHEN TO PULL THE TRIGGER

- Should I take my cattle to 1450 or sell them at 1300lbs
- . When will my implant run out? Is there an ROI to do so?
- . Do the markets allow me to lock a profit on this group?
- · How do the markets work for these cattle in the auction ring?

Real-Time Information

BRING THE EXPERTS IN TO HELP

- Equip your nutritionist with the tools necessary to provide educated recommendations
- · Alert your vet when health issues arise
- Be better prepared with your lender
- Spend more time what you love to do, and empower your advisors to better help


Connecting to Advisors

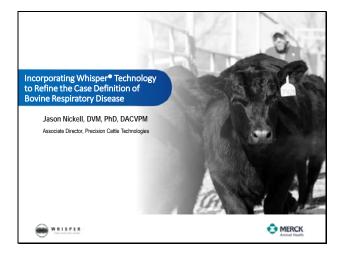
WE SHOULD NEVER ALLOW A NUTRITIONIST TO ASK US...

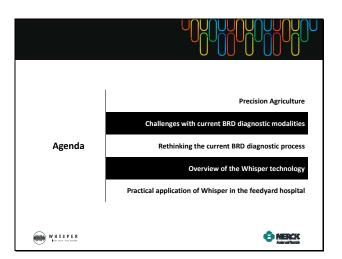
"How are the cattle doing?"

KNOW YOUR HISTORY

REAL-TIME ACCESS

CONNECTING TO ADVISERS





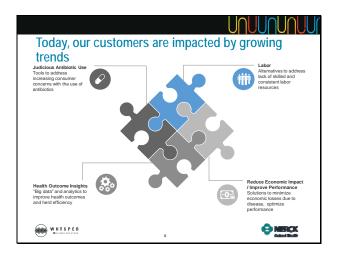
Notes - Notes -- Notes

Rethinking BRD Diagnosis

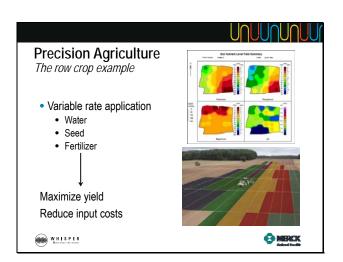
Jason Nickell, DVM Merck Animal Health

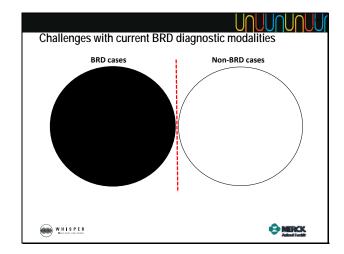
Beef Stocker 2018 Field Day

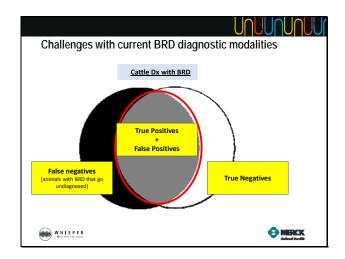
UNUUNUL

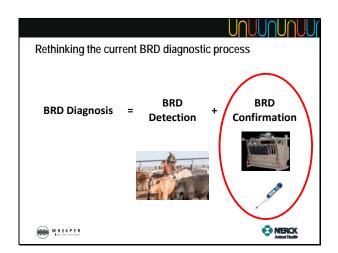

Our Current Mission

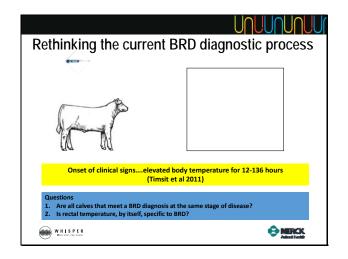
Develop solutions to help our customers assess risk, detect diseases early and make treatment decisions through predictive analytics, leading to improved productivity and validated appropriate antibiotic usage

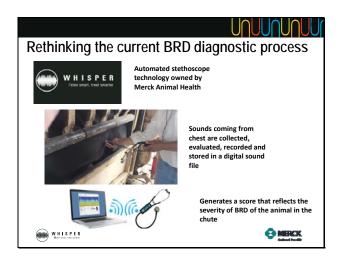


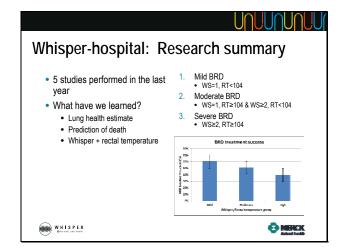


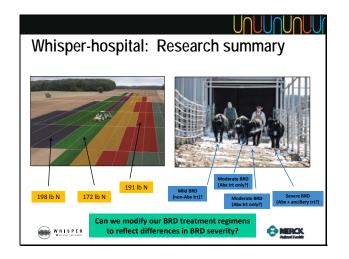


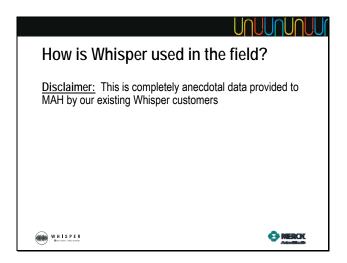

Precision Agriculture The row crop example • Farming management concept based on observing, measuring and responding to inter and intra-field variability in crops. • High-level of variability within a field • Soil type • Fertilizer and water needs • Yield predictability

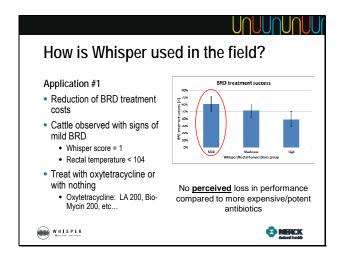


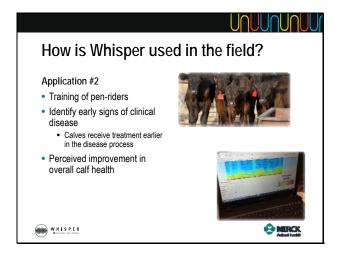


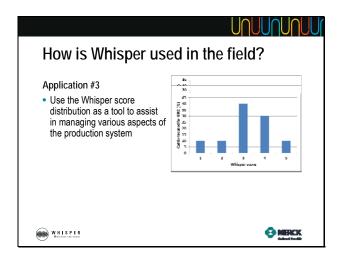












Notes - Notes -- Notes

Livestock Theft in Kansas

Kendal Lothman, Special Agent
Office of the Kansas Attorney General

Kansas Attorney General Derek Schmidt

K-State Beef Stocker 2018 Field Day

September 20th, 2018

Kendal Lothman

- Special Agent
- Assigned to Livestock and Brand Investigation Unit
- Great Bend, KS

Livestock and Brand Investigation Unit

- Created June 2014
- Joint coordination between Kansas Attorney General's Office Kansas Department of Agriculture
- Unit up and running November 2014

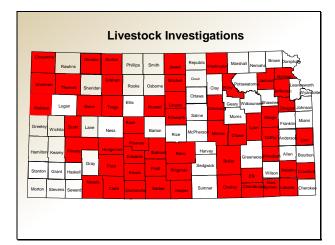
Livestock and Brand Investigation Unit

Our Main Mission

Assist Local
Agencies with livestock
investigations

- •Felony livestock theft
- •Felony livestock pharmaceutical theft
- Brand violations

Assist KS Department of Agriculture with animal health emergencies


How We Get Involved

- At the request of local agency
- At the request of state or federal agency

Case Load

- Have opened 113 cases in the last three and a half years
- 53 Counties
- Assisted 6 States
- ➤ Kansas
- ➤ Nebraska
- ➤ Missouri
- ➤ Oklahoma
- ➤ Texas
- ➤ Colorado

Average about 27 new cases each year

Case Trends

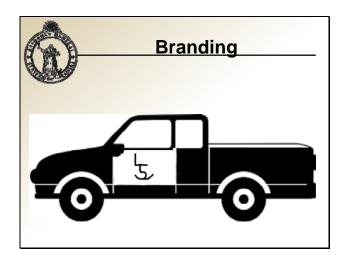
- Thefts stay consistent whether markets up or down
- Increase in cases at the end of grazing season

Livestock in Kansas

- 2017 cattle inventory 6.4 million head
- Kansas ranked third in the nation
- Cattle VS Human 6.4 to 2.9
- Western Kansas has a large number of confined cattle (about 48% of inventory)
- East side has more cow calf operations
- Multi billion dollar industry

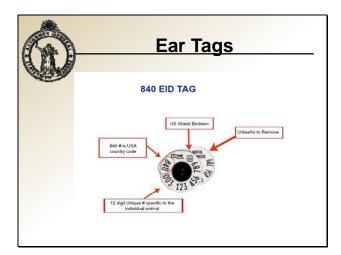
Identifying Cattle


- Branding
- Ear tags
- Tattoo
- DNA
- Unique markings



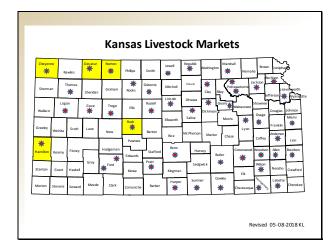
Branding

- Best way to identify livestock
- Can be seen from a distance
- Is hard to alter
- Cannot be removed
- Permanent return address
- Even if it is previous owners, brand can be used to ID the livestock.
- Rarely get cattle stolen that have freeze brand



Ear Tags

- Ranch tags are great when sorting from neighbors but are easily removed
- Official ID tags can be used to track
- If your cattle have official ID tags keep records



Livestock Markets

- •Kansas has 43 livestock markets across the state
- •Only 5 of those markets do brand inspections
- •Those markets choose to check brands due to proximity to Colorado and West Nebraska that require brand inspection
- KDA Animal Health Division has 6 contract brand inspectors that work at those markets. They will occasionally do country cattle or horses that are moving directly to a brand state

Livestock Markets

 Livestock markets are an important key in detecting and catching the outlaws that steal livestock

Livestock Theft

- Is a property crime
- Often resembles other property crimes
- Suspect may be the same
- Often leads back to drugs
- Rural locations
- Easy access, pens available
- Bait cattle

Livestock Theft

- Crime of opportunity
- Late at night or early morning
- Cattle at public market the next morning
- Only property crime that the suspect will get fair market value for stolen goods
- Cattle move quickly once at market
- At some point cattle will be gone permanently
- · Time is of the essence

Outlaws

- Steal because they're lazy
- Take the path of least resistance
- What makes them the most money
- Scout out their targets / Do their home work
- Not worried about being efficient
- May have cattle experience / may not
 - Borrow /steal trailer and pickup
- Need money to support habits
 - Drugs / Rodeo / Gambling

Crime Scene

- . Tiro trooks
 - Dually or single axle pickup
 - Dual or single axle trailer
- Shoe prints
 - Number of persons
- Other prints
 - Horse tracks / 4 wheeler tracks / dog tracks
- Foreign objects that don't belong
 - Cigarette butts
 - Water bottles, beer cans
 - Receipts
 - Blood

Crime Scene

- Baiting Material
 - Cow Cake / Alfalfa
- Distance from trailer tires to loading point
 - Size of the trailer
- Positioning of trailer to chute or alleyway
 - Type of door on trailer
- Contact points of trailer with fence
 - Paint transfer

KDA Missing /Stolen Livestock Report

- Distributed upon report of missing livestock
- Goes to markets, LEO, surrounding states
- Best way to get out information fast
- agriculture.ks.gov/missing livestock
- Instructions / forms / contact information
- List of missing livestock

Common factors

Target 300-600lbsBaby calvesCows10 head1-2 head5-6 head

Bait cattle

- Stolen livestock taken to a market
- Will take what is accessible

Prevention of Livestock Theft

- Brand your cattle
- Lock your gates / deter access to property
- Check your cattle often
- Count your cattle weekly
- Keep records
- Pay attention to what your cattle are telling you
 Spooky /bawling /dry cows / coming to truck
- Trail cameras good way to monitor rural property

•			
•			
,	 		

Prevention of Livestock Theft

- Talk with neighbors
- If you see something suspicious report it
- If you think your cattle have been stolen, report immediately to law enforcement
- Preserve crime scene
- Timely reporting is essential to a successful investigation

Contract care

- Do your home work
- Get references
- ID cattle before delivery
- Hold the caretaker accountable
- Require reports on head count, deads, doctored cattle monthly
- Go inspect livestock / facilities / pastures

Confined Cattle

Confined Cattle

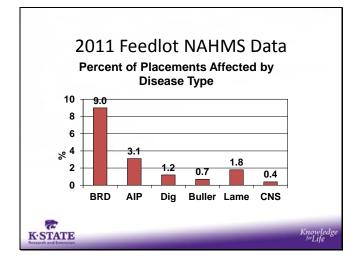
- Head count / In and out
- Death rate / type of cattle
- Track medicine use
- Pay attention to feed consumption
- Checks and balances
- Outlaw is usually a employee

Contact Information

Kendal Lothman Special Agent

OFFICE OF THE KANSAS ATTORNEY GENERAL, DEREK SCHMIDT

Livestock and Brand Investigation Unit Criminal Litigation Division 625 Washington Great Bend, KS 67530 620-792-1850 (Fax) 785-207-8733 (cell)


kendal.lothman@ag.ks.gov

Notes - Notes -- Notes

Treatment Failures that are not BRD Related

A.J. Tarpoff, DVM Kansas State University

Early Treatment=Success Do we have the right diagnosis????? Cattle are prey species Don't show us all their symptoms Dopey looking calves? BRD Or is it something else?

Other Considerations • Lameness • Digestive issues

K·STATE

Lameness Estimates • 16% of all treatments • 5% of deaths • 70% of railer slaughter Griffen et al. 1993

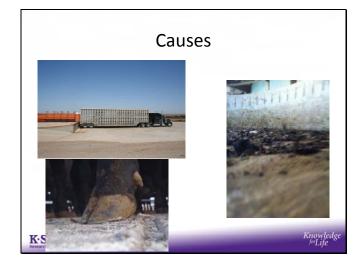
Lameness

- May be the biggest opportunity for improvement in the industry
- Significant losses
- Has been identified as a major point of focus, and as a welfare concern in all livestock industries
 - Beef- Fatigue cattle syndrome
 - Dairy
 - Swine
 - Poultry

Where is the lameness?

- Most studies agree
 - 70% or more of lameness stems from the foot!

Toe tip necrosis/toe abcesses



What causes toe abscesses?

- Predisposing factors include cattle temperament, handling, softening of the hoof due to moisture
 - Cattle fight to get to the middle of the group when threatened (or sorted)
 - The powerful hind legs are used to push as the cattle mill about
 - The toes of the feet (especially the rear feet) may be ground down enough for infection to set in
 - Standing long periods of time on concrete?

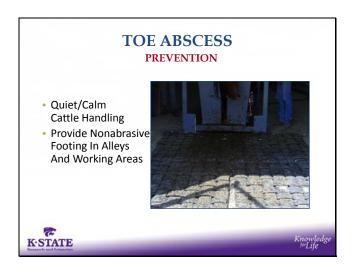
Diagnosing toe abscesses

- Can you tell the difference between a lower and an upper leg lameness?
 - Again, often hard to tell.
 - Walk to protect the toe
- Does not always appear the same as other types of lameness
- Use hoof-testers to find the affected toe
- You may be able to pare down to the abscess with a hoof knife
- Most of the time you will need to take the tip of the toe off with hoof nippers to allow drainage

IDENTIFYING THE PROBLEM

- Pick Up The Foot
- Wash It
- Examine To Determine Cause of Lameness

TOE ABSCESS


TREATMENT

- Tip Toe To Drain Abscess And Relieve Pressure
- DO NOT TRIM ENOUGH TO CAUSE BLEEDING
- May require extended therapy

Beef Stocker 2018 Field Day					
	Roof	Stocko	r 2∩1Ω	Field	Day

Septic Arthritis May occur after initial respiratory disease - Histophilus somni - Mycoplasma bovis Routinely see lameness 1 week + following treatment for BRD - Not Footrot!!

K-STATE

Treatment

- Remember, Mycoplasma does not have a cell wall
 - Penicillin and Ceftiofur are a poor choice
- Recovery takes extended periods of time
 - Bacteria gone, but inflammation remains

"Footrot"

- AKA
 - Infectious pododermatitis
 - Interdigital necrobacillosis
 - Interdigital phlegmon
- Not necessarily any animal carrying a leg

Footrot • Fusobacterium necrophorum • Begins with a skin abrasion • Swelling surrounding the food • Noticeable lameness • SMELL!!!

Treatment • Many labelled options • Time of treatment critical in recovery • Clubfoots seldom recover

Coccidiosis

- Protozoal disease
- Primarily Eimeria bovis or E. zuernii
- Infection is present at some level in ≈100% of all cattle and/or their environment
- Fecal/oral transmission

Coccidiosis

- Most frequently seen between 1 month and 2 years of age — immunity gradually develops
- Incidence increased by stress or concurrent disease
 - Winter
 - Freshly weaned
 - Newly arrived stockers and feeders
 - Worms

Coccidiosis

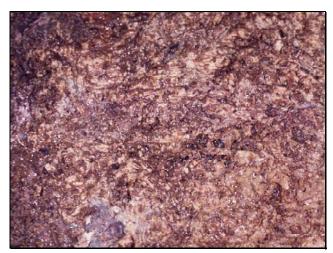
• Bloody diarrhea — bright red blood

Prevention and Control Sanitation Reduce stress Treat before times of stress Preventatives/Treatments: Amprolium Sulfas Decoquinate Monensin Lasalocid

Acidosis

- Rapid grain consumption results in increased lactic acid production in the rumen
 - Lowers pH and acidifies the blood
 - Causes dehydration

K-STATE


Acidosis

- Over consumption
- Caused when animals are moved too rapidly to high concentrate, low roughage diet
- Ration is misformulated
- Cattle are misfed
- Rumen pH <5.0 for extended period

Knowledge

Acidosis

Progression:

- Depressed, slight foam around mouth
- Drunk staggers
- Bloated
- Projectile diarrhea
- Down
- Comatose
- Death

Knowledge

Sequela of acidosis • Poorer performance • Liver abscesses • Founder

Metritis • Aborted heifers • Infection of the uterus - Depression - Fever - Off feed

K-STATE

Notes - Notes -- Notes