November 1996

Volume 2, Number 11

Co-Editors

James R. Dunham Extension Specialist, Dairy Science John F. Smith

Extension Specialist, Dairy Science

Contributors

Karen Schmidt Associate Professor, Dairy Products John Shirley Associate Professor, Dairy Science Jeff Stevenson Professor, Dairy Science

Dave Sukup Manager, Heart of America DHI

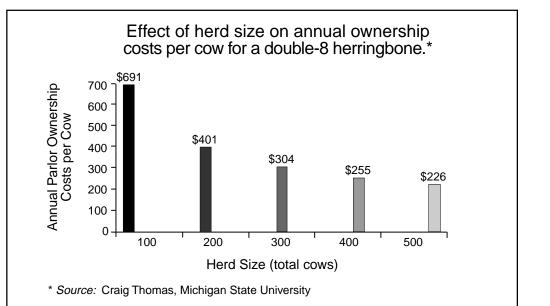
Area DHIA Meetings Jan. 29–Feb 7, 1997 Locations to be announced next month

Printing sponsored by
Protiva

KANSAS DAIRY EXTENSION NEWS http://www.oznet.ksu.edu/dp_ansi/dairylin.htm

Planning Milking Facilities for Dairy Expansion

by J.F. Smith


Introduction

Many dairy operators are considering expansion of existing facilities or construction of new facilities to increase efficiency or profitability.

In many dairy operations, the maximum herd size is determined by the daily capacity of the milking center or the land available for manure disposal.

Constructing or remodeling a milking center is an important business decision that will have an impact on the volume and profitability of the dairy operation for many years. The milking center is the single most expensive facility in a dairy operation. Many large dairies will operate the milking parlor 18 to 20 hours per day to maximize their return on investment. Annual parlor cost per cow is reduced as herd size is increased (see Figure 1). Annual parlor ownership cost per cow decreases from \$691/ cow to \$226/cow as herd size is increased from 100 to 500 cows. Dairy owners or managers should plan expansion of the operation very carefully. It may be more economical to use hired labor and use the existing milking parlor during more

Continued on page 3

	Herd Improvement Summary (October) Quartiles				
	1	2	3	4	Your Herd
uernsey	-	~		-	IIIIu
Rolling Herd Average	16,402	13,884	12,689	10,611	
Summit Milk Yield 1st	56.8	50.8	47.6	41.1	
Summit Milk Yield 2nd	67.9	61.4	56.7	47.1	
Summit Milk Yield 3rd	70.6	62.5	58.1	48.8	
Summit Milk Yield Avg.	64.5	58.2	53.3	45.6	
Income/Feed Cost	1,596	1,198	1,070	825	
SCC 1st LACT	151	148	247	403	
SCC 2nd LACT	164	243	255	425	
SCC 3rd+ LACT	427	329	357	633	
SCC Average	246	245	293	501	
Days to 1st Service	85	85	100	101	
Days Open	145	148	160	150	
Projected Calving Interval	431	434	446	435	
rown Swiss					
Rolling Herd Average	15,039	13,513	12,614	10,876	
Summit Milk Yield 1st	53.6	48.4	48.4	46.1	
Summit Milk Yield 2nd	69.4	64.2	53.6	53.2	
Summit Milk Yield 3rd	74.5	67.6	65.2	61.5	
Summit Milk Yield Avg.	63.9	60.9	57.1	53.8	
Income/Feed Cost	1,352	1,079	951	616	
SCC 1st LACT	187	155	121	316	
SCC 2nd LACT	208	144	221	235	
SCC 3rd+ LACT	250	325	160	210	
SCC Average	214	227	166	255	
Days to 1st Service	91	91	69	104	
Days Open	103	142	119	124	
Projected Calving Interval	385	424	399	406	
Iolstein					
Rolling Herd Average	21,778	18,804	16,886	13,930	
Summit Milk Yield 1st	70.3	63.3	58.4	50.4	
Summit Milk Yield 2nd	90.1	80.0	72.8	61.1	
Summit Milk Yield 3rd	93.3	84.2	77.6	65.4	
Summit Milk Yield Avg.	83.5	75.4	69.7	59.6	
Income/Feed Cost	1,772	1,483	1,417	998	
SCC 1st LACT	218	227	229	281	
SCC 2nd LACT	244	263	283	342	
SCC 3rd+ LACT	391	407	427	552	
SCC Average	289	308	325	423	
Days to 1st Service	92	93	96	99	
Days Open	143	142	142	143	
Projected Calving Interval	423	421	422	422	
ersey					
Rolling Herd Average	15,850	13,516	11,948	9,937	
Summit Milk Yield 1st	49.1	46.1	40.6	37.0	
Summit Milk Yield 2nd	62.3	56.4	49.4	43.3	
Summit Milk Yield 3rd	67.4	58.9	53.3	44.0	
Summit Milk Yield Avg.	60.0	54.2	49.2	41.7	
Income/Feed Cost	1,558	1,152	963	811	
SCC 1st LACT	178	246	217	336	
SCC 2nd LACT	214	272	251	412	
SCC 3rd+ LACT	337	449	464	558	
SCC Average	255	345	351	463	
Days to 1st Service	82	86	91	91	
Days Open	113	123	126	128	
Projected Calving Interval	392	401	405	407	

Heart of America Dairy Herd Improvement Summary (October)

Breed Effect on Titratable Acidity of Milk

By Karen Schmidt & John Shirley

Titratable acidity (TA) of raw milk is affected by microbial content, protein content and age of the milk. The breed of cow may also affect titratable acidity because of variance in protein and fat content. Raw milk samples were collected from Ayrshires, Holsteins, and Guernseys to examine breed effects (Table 1).

Guernsey milk clearly has the highest TA value and the highest milk protein and fat %. The Ayrshire breed was higher in milk protein (3.25%) compared to Holsteins (3.12) and showed a slightly higher TA value (.16 versus .15, respectively). It is interesting to note that the large difference in milk fat % between Ayrshires and Holsteins (3.9 versus 3.25, respectively) did not have a proportional affect on TA. Milk from the Guernsey cows had a higher total plate count than the other breeds and this, coupled with the higher milk protein % probably accounts for the elevated TA value.

These observations reinforce the fact that breed affects on TA are related to milk composition and quality. Acceptable TA value for dairy processing plants are normally based on milk from the Holstein breed because they account for the majority of the milk produced in the United States.

Table 1. Average titratable acidity (TA), total plate count (TPC), fat content, protein content, pH and somatic cell count (SCC) of milk from Ayrshire, Guernsey and Holstein cows.

Breed TA(%)	pН	Protein%	Fat%	SCC	TPC
Aryshire .16	6.90	3.25	3.90	95	3,700
Guernsey .19	6.58	3.39	4.95	123	8,900
Holstein .15	6.90	3.12	3.25	143	1,700

hours per day than to remodel or construct a new parlor and reduce milking time to 4 to 5 hours per day. Milking parlor capacity should be determined for present and future needs. If expansion is planned for the future, new facilities need to be designed with flexibility for future expansion in mind.

Designing the Milking Center

Performance of milking parlors has been evaluated by time and motion studies to measure steady state throughput. However, this does not include time for cleaning the milking system, maintenance of equipment, effects of group changing, and milking the hospital string.

The performance of various types of milking parlors has been published, and parlor performance in the United States ranged from 25 to 401 cows per hour. Throughputs ranged from 84 to 401 cows per hour in parallel and from 60 to 205 cows per hour in herringbone parlors. Performance within a parlor type or size may vary because of milking frequency, detachers, wash pens, premilking hygiene, number of operators, and operator routine. Whether the milking facility has been remodeled or is new construction also can affect parlor performance.

Milking parlor size should be large enough to allow flexibility to incorporate premilking hygiene routines. Milking parlors should be sized to incorporate different milking frequencies so that all cows can be milked once in 8 hours when milking 2 \times per day, once in 6.5 hours when milking 3 \times per day, and once in 5 hours when milking 4 \times per day. Using these criteria, the milking parlor will be sized to accommodate the necessary cleaning and maintenance.

Milking parlors need to be designed so that a group of cows can be milked in 30 to 60 minutes, depending on milking frequency. Observations on commercial dairy farms indicate that a group of cows should be milked in 60 minutes when milking 2 \times per day, in 45 minutes when milking 3 \times per day, and in 30 minutes when milking 4 \times per day to ensure comfort by minimizing time that cows stand on concrete and are kept away from feed. Group size should be divisible by the number of stalls on one side of the milking parlor to maximize parlor efficiency.

Carefully planning the milking center in a dairy expansion can provide large returns on investment over the life of the facilities.

Kansas Quality Milk Award Winners

Small Herd Division

- 1. Barbara and Don Kiehl, Pomona
- 2. Lavern Figge, Onaga
- 3. Jim and Nancy Sack, Baldwin
- Medium Herd Division
- 1. Gold Star Dairy, Spivey
- 2. Doug Unruh, Walton
- 3. John Unruh, Galva

Large Herd Division

- 1. Sperfslage Dairy, Oneida
- 2. John and Lovina Maxwell, Atwood
- 3. Lehman Brothers, Sabetha

Hay Prices*					
_	Location	Quality	Price (\$/ton)		
Alfalfa	Southwestern Kansas	Premium	120–130		
Alfalfa	Southwestern Kansas	Good	115-120		
Alfalfa	South Central Kansas	Premium	100-110		
Alfalfa	South Central Kansas	Good	90-100		
Alfalfa	Southeastern Kansas	Premium	110-120		
Alfalfa	Southeastern Kansas	Good	95-110		
Alfalfa	Northwestern Kansas	Premium	110–115		
Alfalfa	Northwestern Kansas	Good	80-90		
Alfalfa	North Central Kansas	Premium	90-120		
Alfalfa	North Central Kansas	Good	80-90		

Source: USDA Weekly Hay Report, Week ending November 8, 1996

*Premium Hay RFV = 170–200

Good Hay RFV = 150–170

Feed Stuffs Prices				
	Location	Price (\$/ton)		
SBM 48%	Kansas City	235.90-236.90		
Cotton Seed Meal	Kansas City	204-205		
Whole Cottonseed	Memphis	130		
Meat and Bone Meal	Central United States	255-260		
Blood Meal	Central United States	550		
Corn Hominy	Kansas City	109–110		
Corn Gluten Feed	Kansas City	95-100		
Corn Gluten Meal 60%	Kansas City	345-355		
Distillers Dried Grain	Central Illinois	133-136		
Brewers Dried Grain	St. Louis	134–140		
Wheat Middlings	Kansas City	87-90		

Source: USDA Weekly Feed Stuffs Report, Week ending November 6, 1996

Department of Animal Sciences & Industry 125 Call Hall Manhattan, Kansas 66506–1600

Nonprofit Organization U.S. POSTAGE PAID Permit #525 Manhattan, Kan. 66502

Dairy Lines is published for dairy producers by the Department of Animal Sciences and Industry, Cooperative Extension Service, Kansas State University.

For more information or questions, please contact Extension Animal Sciences and Industry at (913) 532-5654.

Sec

Dick Dunham Extension Specialist, Dairy Science

John Smith Extension Specialist, Dairy Science

The Department of Animal Sciences and Industry at Kansas State University greatly appreciates the sponsor(s) of the Dairy Lines Newsletter. These sponsorships in no way imply the Department's endorsement of the products and services offered by the sponsors. The Department welcomes inquires from other individuals, associations and firms that may be interested in cosponsoring this publication.

KSU, County Extension Councils and U.S. Department of Agriculture Cooperating. All educational programs and materials available without discrimination on the basis of color, race, national origin, sex, age, or UNIVERSITY disability.

NCC KANSAS DAIRY EXTENSION NEWS