### Welcome to 2009 Swine Day!





### Outline for the Day

- Sow Research
  - Creep Feeding
  - Late Gestation Feeding
  - Importance of Birth Weight
- Nursery Research
  - Starter Diet Ingredients
  - Feed Additives
  - Lysine Requirements
- PCV2 Vaccination
- H<sub>1</sub>N<sub>1</sub> Panel



### Outline for the Day

- Grow-Finish Research
  - Feeder design and adjustment
  - Amino acid research
  - DDGS and other alternatives
  - Mycotoxins
  - Marketing
    - Mixing and topping pigs and Paylean use
- Kent Bang Bank of the West
- Ice Cream Reception



### Creep Feeding



### **K-State Creep Feeding Research**

| Study<br># | No. of<br>Litters | Topic                                 |
|------------|-------------------|---------------------------------------|
| 1          | 84                | Creep feeding x lactation feed intake |
| 2          | 54                | Creep feeding duration                |
| 3          | 54                | Creep feeder design                   |
| 4          | 50                | Feed flavors in creep feed            |
| 5          | 96                | Creep diet complexity                 |

Sulabo PhD Dissertation, 2009



#### **Creep Feed Impact on Post-weaning Growth**



Sulabo et al., 2009



### **Creep Feeder Design**







### Materials and Methods (Exp. 5)

- 96 sows (PIC) and their litters
- Conducted in a commercial facility



- Dietary treatments:
  - Treatment 1 − No Creep (n = 26)
  - Treatment 2 Simple creep diet (n = 26)
  - Treatment 3 Complex creep diet (n = 44)
- Creep fed from d 18 to 21 (weaning) using the rotary feeder with a hopper



### Exp 5 Simple (Sow Feed) vs Complex Creep (Pelleted Diet with Milk Products and Animal Proteins



**Creep diet complexity** 



## Effect of creep diet complexity on the proportion of piglets consuming creep feed (Eaters)



**Creep diet complexity** 

a,bP<0.0001

Kansas State University.

#### **Proportion of Eaters According to Weight Category**



**Creep Diet Complexity** 

Sulabo et al., 2009



## Percentage of pigs failing to gain weight during the initial 3 d after weaning



**Creep consumption category** 

 $^{a,b}P < 0.0001$ 



## Influence of creep feed consumption on performance after weaning



**Creep consumption category** 





#### **Creep Feeding Practical Recommendations:**

- Start 3 to 5 days before weaning
- Use appropriate creep feeder design and a complex creep feed
- Target 1.1 to 2.2 lb creep feed consumption per litter



# Effect of Increased Late Gestation Feed Intake

+2.0 lb from d 90 to 112 PIC 1050 Sows



#### Fetal Growth in Gestation



The majority of fetal growth occurs during the last 1/3 of gestation. As a result many producers increase feed intake in late gestation.



## Gestation Weight Change d 90 to 112



Shelton et al., 2010



#### Piglet Birth Weight



#### **Lactation Feed Intake**



Shelton et al., 2010



#### Farrowing to Weaning Weight Change



Shelton et al., 2010



#### **Summary – Increased Feed in Late Gestation**

- Offered no benefit in sows
- Decreased lactation feed intake and increased weight loss in gilts with adequate or marginally excessive back fat
- Increased sow feed cost by \$3.50 to \$5.00 per sow

#### Bottom line

- Bump thin sows no more than 2 lb and no sooner than d 90 of gestation



# Effect of Piglet Birth Weight and Litter Size on Subsequent Growth Rate





#### **Procedures**

- 2,204 pigs (PIC sired) from a commercial sow farm were weighed then weaned at 25 days of age
- 4 birth weight categories, lb
  - **-** ≤ 2.3
  - 2.4 to 3.3
  - 3.4 to 4.3
  - $\ge 4.4$
- 3 total born categories
  - **-** ≤ 11
  - 12 to 14
  - > 15



Washington, Kansas



# Influence of total born category on weight of pigs born alive



**Total born category** 





# Influence of total born and weight category on number of pigs weaned



**Total born category** 





# Influence of total born category on pig weaning weight



Bergstrom et al., 2009



# Influence of total born category on preweaning mortality







# Influence of birth weight category on pig market weight (d 156 after weaning)



Bergstrom et al., 2009



# Influence of birth weight category on percentage of culls and pigs < 215 lb







## Influence of Birth-weight on Live-weight at 180 d of age, lb



Bergstrom et al., 2009



### Summary

- Larger litters will have more lightweight pigs than small litters but...
- Large litters still have more heavy pigs.
- Low birth weight pigs, < 1.5 to 2 lb are very unlikely to reach an acceptable market weight.



### **Lactation Feeding - Key Points**

- Feed intake drives subsequent reproduction
- High producing maternal line sows with lower feed intake will continue to drive milk production at the expense of body stores
- Many US swine producers are installing ad lib lactation feeders







### Nursery pig research





# Influence of PEP2 on nursery pig performance (D 0 to 11)





# Influence of PEP2 on nursery pig performance (D 11 to 25)







# Influence of PEP2 on nursery pig performance (D 0 to 25)







### PEP<sup>2</sup> Summary

 Pigs fed PEP<sup>2</sup> had greater ADG and improved F/G compared to pigs fed 4% select menhaden fish meal



#### Nursery Growth Promoting Copper and Zinc



Zn= 3,000 ppm d 0 to 14 and 2,000 ppm d 14 to 42 Cu= 125 ppm



#### Nursery Growth Promoting Copper and Zinc



Zn from d 0 to 14 and Cu from 14 to 42 resulted in the heaviest Pig with \$0.56 less cost per pig compared to Cu+Zn

Shelton et al., 2009



#### Influence of dietary antibiotics on ADG (d 0 to 21)





#### Influence of dietary antibiotics on ADG (d 21 to 42)



### Influence of dietary antibiotics on final pig weight (d 42)





### **Antibiotic summary**

 Adding antibiotics to the nursery diet improved pig performance and economic return



# Available P released by phytase source and level





### Phytase stability trial

- 3 sources (Ronozyme P, Optiphos, Phyzyme)
- 2 coatings (Coated and uncoated)
- 3 forms (pure, vitamin premix VTM premix)
- 4 temperatures (-18, 5, 23, 37 C)
- 6 periods (0, 30, 60, 90, 120, 180 d)
- All analysis by DSM
- Source x coating x form x temperature x day interaction (P < 0.001)</li>



## Phytase shelf life at different storage temperatures





## Phytase activity remaining in pure form at 23 C (73 F) at 180 days





# Phytase activity remaining in vitamin premix at 23 C (73 F) at 180 days





## Phytase activity remaining in VTM premix at 23 C (73 F) at 180 days





## Phytase activity remaining in pure form at 37 C (99 F) at 180 days





### Phytase stability trial

- Source x coating x form x temperature x day interaction (P < 0.001)</li>
- Pure products held at 23°C or less were the most stable.
- In premixes, longer storage time and higher temperature reduced phytase activity.
- Coating mitigated some of the negative effects of storage time and temperature for premixes.



# Influence of lysine level on nursery pig performance (d 0 to 35)



SID Lysine, %



# Influence of lysine level on nursery pig performance (d 0 to 35)



SID Lysine, %



### Lysine study summary

- Marginally deficient diets can be fed for the first 21 days after weaning provided that the late nursery diet is not deficient in lysine
- May provide more flexibility in diet formulation



### Effect of Vaccination on Production Responses



### Effect of PCV2 and *M. hyo* vaccination on nursery pig weight (d 35)

**PCV2** × *M. hyo*: P = 0.68 **PCV2**: P < 0.01 *M. hyo*: P = 0.06



Potter et al., 2009



### Effect of PCV2/*M. hyo* vaccine strategy on Fainting Pigs and Post Weaning Losses









### Effect of PCV2/M. hyo vaccine strategy on ADG



Bergstrom et al., 2009

## Effect of PCV2/*M. hyo* vaccine strategy on wean-to-finisher ADG (d 0 to 155)



Bergstrom et al., 2009





## Effect of PCV2 vaccine strategy on ADG under a PRRS Challenge

d 0 and 15 = PCV2 Vaccination



Shelton et al., 2009





## Effect of PCV2 vaccine strategy on ADG under a PRRS Challenge

d 29= PRRS Challenge



Shelton et al., 2009





### Effect of PCV2 vaccine on Survival under a PRRS Challenge







### **Sirrah PRRSV-RS Vaccine Trial**





Potter et al., 2009



### Effect of Sirrah PRRSV-RS Vaccine on Mortality



### Effect of Sirrah PRRSV-RS Vaccine on Finisher ADG and Feed Efficiency



Potter et al., 2009



## **Key Take Home Messages for Vaccination Strategies:**

- Some vaccines negatively impact nursery performance
  - The impact needs to be evaluated against effectiveness in the finisher
- Although overall growth rate was similar –
  pattern of growth rate was different between the
  two PCV2/M. hyo vaccination strategies
- We failed to find an impact on production parameters for the PRRS vaccine



### Thank You!





### Grow-Finish Research Update

- Feeder design and adjustment
- Amino acid levels
- DDGS and other alternatives
- Mycotoxins
- Marketing
  - Mixing and topping pigs and Paylean use



# Effects of feeder type and adjustment on finishing pig growth





Bergstrom et al. 2008







### Proper Finishing Feeder Adjustment



### Effects of feeder type on final weight



Bergstrom et al. 2008





#### Effects of feeder type on F/G







# Influence of feeder type and DDGS level (20 or 60%) on pig performance







# Influence of feeder type and DDGS level (20 or 60%) on pig performance







### Effects of feeder design and changing water source at 4 and 8 weeks before market on pig performance





### Effects of feeder design and changing water source at 4 and 8 weeks before market on pig performance





### Effects of feeder design and adjustment on average daily gain from 42 to 85 lb





#### Effects of feeder design and adjustment on percentage pan coverage



Setting of 10 with a 0.75 inch opening and ~53% coverage



Setting of 14 with a 1 inch opening and ~73% coverage





### Effects of feeder design and adjustment on feed efficiency from 42 to 85 lb





### Effects of feeder design and adjustment on feed efficiency through 270 lb





### Percentage difference in ADG and F/G with more open adjustment (18 vs 10) for wet/dry feeder





#### **Current Feeder Recommendations**

- Dry feeders
  - 50% of pan should be covered with feed
    - 1 to 1.25 inch below adjustment gate
  - Minimum of 2 inch of feeder space/pig
- Wet/dry feeders
  - Increased weight gain and intake compared to dry feeders
  - Still determining optimal feeder settings
    - 1.25 inch opening from placement to 200 lb
    - 0.75 inch opening after 200 lb





- •First pigs placed in early December 2008
- Eight research projects completed or in progress:
  - 1) DDGS x dietary enzyme
  - 2) Four separate lysine requirement experiments
  - 3) Feeding blended diets or corn-supplement blend
  - 4) DDGS x wheat midds
  - 5) Feeder space x feeder adjustment



### SID lysine requirements in the new KSU finishing barn (no added fat diets)





## Feed blending using the FEEDPro system on growth performance



Sulabo et al., 2010



### Feed blending using the FEEDPro system on feed cost/pig



Sulabo et al., 2010



#### Feed blending using the FEEDPro system on income over feed cost



Sulabo et al., 2010



Use synthetic amino acids continue to be used economically in finishing diets

| _        | A E                                               | 3                                       | С      | D         |  | E    | F      | G |
|----------|---------------------------------------------------|-----------------------------------------|--------|-----------|--|------|--------|---|
| 1        | Lavy Dustain Ausina Asid Duine Calavilates        |                                         |        |           |  |      |        |   |
| 2        |                                                   | Low Protein Amino Acid Price Calculator |        |           |  |      |        |   |
| 3        |                                                   |                                         |        |           |  |      |        |   |
| 4        |                                                   | Price, \$                               |        |           |  |      |        |   |
| 5        |                                                   |                                         | Corn   |           |  | 3.80 | \$/bu  |   |
| 6        |                                                   |                                         | Soybe  | ean meal  |  | 300  | \$/ton |   |
| 7        |                                                   |                                         | L-Lys  | ine       |  | 0.85 | \$/lb  |   |
| 8        |                                                   |                                         | DL-M   | ethionine |  | 2.00 | \$/lb  |   |
| 9        |                                                   |                                         | L-Thre | eonine    |  | 1.20 | \$/lb  |   |
| 10       |                                                   |                                         |        |           |  |      |        |   |
| 11       |                                                   |                                         |        |           |  |      |        |   |
| 12       | Savings per pig with AA fortified diet, \$ \$0.44 |                                         |        |           |  |      |        |   |
| 13       |                                                   |                                         |        | A10000    |  |      |        |   |
| 14<br>15 |                                                   |                                         |        |           |  |      |        |   |
| 16       |                                                   |                                         |        |           |  |      |        |   |
| 17       |                                                   |                                         |        |           |  |      |        |   |

www.KSUswine.org



When supplementing Lysine,
Threonine, and Methionine –
Tryptophan is typically the
limiting amino acid in growing
pig diets



## Effect of TID Try:Lys on finishing ADG (d 0 - 42; initial BW 80 lb)





## Effect of TID Try:Lys on finishing ADFI $(d\ 0-42; initial\ BW\ 80\ lb)$





## Effect of TID Try:Lys on finishing F/G (d 0 - 42; initial BW 80 lb)





## Effect of TID Try:Lys on finishing ADG (d 0 - 42; initial BW 80 lb)





#### Grow-Finish Research Update

- Feeder design and adjustment
- Amino acid levels
- DDGS and other alternatives
- Mycotoxins
- Marketing
  - Mixing and topping pigs and Paylean use



#### DDGS Value Calculator with no performance change

| Corn, \$/bu       | \$<br>3.80 |
|-------------------|------------|
| SBM, \$/ton       | \$<br>300  |
| Monocal, \$/ton   | \$<br>510  |
| Limestone, \$/ton | \$<br>45   |
| Lysine HCI, \$/lb | \$<br>0.85 |
| DDGS, \$/ton      | \$<br>135  |

|                             | DDGS, %  |          |            |
|-----------------------------|----------|----------|------------|
| i <del>s</del>              | 10%      | 20%      | 30%        |
| Change in diet cost, \$/ton | -\$6.22  | -\$10.77 | -\$14.00   |
| Approximate savings, \$/pig | \$1.87   | \$3.23   | \$4.20     |
| Breakeven price, \$/ton     | \$197.23 | \$188.83 | \$181.68   |
|                             |          | www.KS   | Uswine.org |



#### DDGS step-down or withdrawal regimen on ADG





#### DDGS step-down or withdrawal regimen on final BW





#### DDGS step-down or withdrawal regimen on F/G





#### DDGS step-down or withdrawal regimen on carcass yield





#### DDGS step-down or withdrawal regimen on FFLI





#### DDGS step-down or withdrawal regimen on jowl fat iodine value





### DDGS step-down or withdrawal regimen on jowl fat iodine value by gender



### DDGS step-down or withdrawal regimen on feed cost/pig





#### DDGS step-down or withdrawal regimen on income over feed cost





## Meta analysis of dietary enzymes on growth of finishing pigs

#### Details of individual experiments included in the meta-analysis

| Experiment | Duration, d | Start<br>weight, lb | DDGS, %   | Enzyme activity of product           |
|------------|-------------|---------------------|-----------|--------------------------------------|
| 1          | 92          | 65.3                | 15        | ß-mannanase                          |
| 2          | 56          | 75.8                | 15        | ß-glucanase, cellulase, and protease |
| 3          | 90          | 101.5               | 45 and 60 | Proprietary blend of enzymes         |
| 4          | 66          | 87.4                | 30        | Bacterial endo-1,4-beta-<br>xylanase |
|            |             |                     |           |                                      |

Kansas State University.

#### Meta analysis of dietary enzymes on ADG





#### Meta analysis of dietary enzymes on F/G





# Effect of corn hominy feed on average daily gain from 80 to 270 lb









# Effect of corn hominy feed on feed efficiency from 80 to 270 lb











# Effect of DDGS and wheat midds on pig performance



Wheat Midds (%) in 30% DDGS diets

Barnes et al., 2010



# Effect of DDGS and wheat midds on pig performance



Barnes et al., 2010



### Mycotoxins and New Crop Corn

- Observations of black mold on corn in Kansas and surrounding states
  - Most test results have shown limited mycotoxin contamination
  - Deoxynivalenol (DON), also commonly known as vomitoxin, has been the most common this year
    - > 1 ppm may reduce feed intake and rate of gain
    - > 5 ppm may result in feed refusal
    - > 10 ppm may result in vomiting
- DDGS 3 times the level of original corn level



### Mycotoxins – What can we do?

- Collect a good sample to test if suspected
- Screen/clean the grain molds are in the dust and stressed small kernels
- Blend contaminated grain with clean grain to get below a maximum threshold for feeding
- Separate contaminated grain and feed higher levels to finishing pigs or sell for cattle feed
- Binders generally do not help with vomitoxin
  - Balance binder cost with other alternatives



### **Managing Pigs at Close Out**



### Impact of pen unloading on feed efficiency and average daily gain



Boyd et al., 2008



## Impact of pen unloading on feed efficiency and average daily gain



Jacela et al., 2009



#### Impact of pen unloading on profit per pig



Jacela et al., 2009



# Effect of Paylean on Day 0 to 21 Average Daily Gain and Feed Efficiency











## Effects of different Paylean feeding programs on average daily gain







## Effects of different Paylean feeding programs on percentage lean







### Effects of different Paylean feeding programs on income over feed cost







#### Effect of Mixing Pigs at 260 lb on ADG







#### Effect of Mixing Pigs at 260 lb on F/G







# Key Take Home Messages for Managing Pigs at Close Out:

- Top a minimum of 2 pigs from each pen 15 to 20 d prior to closeout
  - Gate cut pigs into pens so pigs can be marketed uniformly
  - Limit further tops unless pigs will be heavier than top of the grid
- Feed Paylean for 14 to 21 d prior to closeout
  - Shorter durations if achieving optimum market weight
  - Longer durations will continue to improve lean but little benefit in growth rate
- If allowed enough time mixing pigs at closeout is not detrimental to growth rate
  - Enables more efficient site utilization
  - Feed efficiency is poor in the immediate period after mixing
  - FG Improves over time as growth rate and feed intake increases

### Thank You!



