KSU Swine Day 2011

KSU Swine Day 2011

Morning – Finisher pigs

Afternoon – Nursery and sows

- Vitamin D research
- New KSU premix recommendations
- Nursery diet ingredients
- Feed processing

Grow-finish pigs

- Alternative ingredients
 - Wheat
 - Bakery meal
 - DDGS
 - Withdrawal from high fiber diets
- Feeder design
- Paylean
- Correct market weight
- Improvest

Feeding Wheat to Swine

Nutrient differences wheat vs. corn:

- Lysine: 35% more SID lysine; (CP: 13.5. vs 8.5%)
- ME: 6% less energy; (1,456 vs. 1,551 kcal/lb)
- Available Phosphorus: ~4 x higher (0.19 vs. 0.04%)

Ingredient changes:

- Less soybean meal and supplemental phosphorus
- Higher synthetic lysine use is possible
- Can add fat to balance dietary energy

Grinding:

- Still target 600-700 microns
- More "flouring" occurs as wheat is more finely ground

Feeding Wheat to Swine

Anticipated performance and breakeven changes:

- No added fat to balance energy:
 - Higher F/G (~+0.12 F/G from 50 250 lb)
 - Slightly lower ADG
 - Current breakeven is 102% of corn price (bu/bu)
- Added fat to balance energy (\$0.48/lb CWG):
 - Similar ADG and F/G
 - Current breakeven is 95% of corn price (bu/bu)

Bakery meal (importance of source)

Source

<u> </u>			Source		
	1	2	3	4	5
Moisture, %	10.0	10.0	10.0	10.0	11.0
Protein, %	12.0	10.0	12.0	9.7	9.3
Fat, %	8.5	9.0	9.1	3.4	9.2
Fat, % of NRC	75%	80%	81%	30%	81%
Crude fiber, %	5.0	5.0	3.1	2.7	1.7
Ash, %	5.5	5.5	4.0	2.8	2.3
Salt, %	1.3	1.3	2.0	1.2	1.5
Sugar, %	12	16	13.4	19.2	22.8
Starch, %	20	22	37.2	28.0	19.2
ME, Mcal/lb	1.53	1.55	1.59	1.49	1.63
ME, % of NRC	91%	92%	95%	89%	97%

Feeding high DDGS levels

- Economics in 2011 greatly increased DDGS inclusion rates
 - Savings were as high as \$7 to 8/pig with 40% inclusion
 - Still \$1.50 to 5/pig potential savings depending on corn,
 DDGS, and soybean meal prices
 - Iodine value and carcass yield are the limiting factors
 - Economics will change as more fat is removed from DDGS
 - Potentially less iodine value issues, but more impact on growth and yield

Effect of TID Try:Lys in 30% DDGS diets on finishing ADG (Exp. 2; d 0 to 73; BW 150 to 275 lb)

Barnes et al., 2010

Knowledge ^{for}Life

Corn DDGS quality control

Variability in DDGS quality

 Main issue is fat level 	Fat, %	ME, %
Low = < 9% fat	8.4	95.0%
 Medium = 9 to 10.5% fat 	10.2	97.5%
High = > 10.5% fat	11.9	100%

 Need to monitor DDGS quality or work with company that monitors DDGS quality

Effects of Sorghum or Corn DDGS on ADG

Knowledge ^{for}Life

Effects of Sorghum or Corn DDGS on F/G

Effects of Sorghum or Corn DDGS on Jowl IV

Knowledge ^{for}Life

Effect of DDGS and wheat midds on carcass weight (100 to 295 lb)

Effect of fiber level and fat addition during withdrawal on pig performance (100 to 275 lb)

Fiber = DDGS (0, 15, 30%) and Midds (0, 9.5, 19%)

Influence of days of withdrawal of high IV diet on jowl fat iodine value

Influence of days of withdrawal of high IV diet on jowl fat iodine value

Days	21	42	21	42
IV increased from normal	6	6	12	12
IV reduced, %	25%	48%	25%	48%
IV reduced, mg/g	1.5	2.9	2.9	5.7

IV reduction % = 0.0111x + 0.0127

Assumed pigs switched to corn-soy diet for withdrawal

Feeder type – Dry vs. Wet/Dry Dry feeder Wet/Dry feeder

Single-sided, 62.7 in long, 5-hole feeder (Staco, Inc., Schaefferstown, PA) and a stainless steel cup waterer

Double-sided with 15 in wide opening on both sides of the trough and single nipple waterer (Crystal Springs, GroMaster, Inc., Omaha, NE)

Wet Dry vs Dry Feeders

Trial	ADG	FG	Lean	IOFC*
1 Meal	Pos	No Diff		
2 Meal	Pos	Neg	Neg	Neg
3 Meal	Pos	Neg	Neg	Neg
4 Meal	Pos	Pos		
5 Meal	Pos	No Diff	Neg	Neg
6 Meal	Pos	No Diff	Neg	Pos
7 Meal	Pos	No Diff	No Diff	No Diff
8 Meal	Pos	Neg	Neg	Neg
9 Pellets	Pos	Pos	Neg	Pos
9 Meal	Pos	Neg	Neg	No Diff
10 Pellets	Pos	Neg	Neg	Neg
10 Meal	Pos	Neg	Neg	Neg
11 Meal	Pos	Pos		

Feeder design characteristics

- 1. Width of a single feeding space minimum 14 inches
 - Shoulder width (cm) + $10\% = 6.1 \times BW^{0.33} \text{ kg} + 10\%$
- 2. Depth of feeding space Approximately 10 inches
- 3. Divider to provide some degree of pig protection
 - Forces pig to stand perpendicular to feeder to eat
 - Decreased rooting and pig/pig interaction

Summary of feeder adjustment trials

		Feeder –	Coverage, %		Significant	Change
Authors	Stage	type	Min	Max	response	in F/G
Smith	Nursery	Dry	6	93	ADG, ADFI	2.1%
Duttlinger1	Finisher	Dry	26	79		3.1%
Duttlinger2	Finisher	Dry	24	78	ADG	2.6%
Bergstrom1	Grower	Dry	9	79	ADFI	2.2%
Bergstrom1	Grower	Wet/dry	35	65	ADG, ADFI	-1.6%
Bergstrom2	Finisher	Dry	25	83		0.0%
Bergstrom2	Finisher	Wet/dry	53	82	ADG, ADFI	5.7%
Bergstrom3	Finisher	Wet/dry	63	83	ADG, ADFI	0.4%
Myers	Finisher	Dry	28	75	ADFI, F/G	3.9%
Myers2	Finisher	Dry	43	87	ADFI, F/G	4.9%

Finisher F/G improvement by decreasing pan coverage 2.9%

Paylean economic return

- During high feed and market prices
 - Greater economic return per pig
 - Greater return for higher doses
 - 9 > 6.75 > 4.5 g/ton
 - Optimal duration increases slightly
 - Feed for 21 to 28 days before market

Determining optimal marketing strategy for barns

- To accurately market barns, we need information:
 - Average weight of pigs in barn
 - Variation in pig weight
- Then, we must be able to find the heaviest pigs and get them on the truck?

Normal distribution of pig weights in a barn Mean = 213.5 lb, Standard Deviation = 21.5 lb

Histogram of Pig Weights

Groesbeck

Mean = 253.0 lb Median = 254 lb Standard Deviation = 38.2 lb CV = 13.0 %

Portland

Mean = 213.5 lb
Median = 214 lb
Standard Deviation = 21.5 lb
CV = 10.1 %

Methods of sampling a barn to determine average pig weight (30 pig sample)

95% confidence interval

Pigs/pen	Pens	Upper, lb	Lower, lb	Range, lb
15	2	223.9	197.6	26.3
10	3	223.3	201.3	22.0
6	5	222.5	203.9	18.6
5	6	222.0	204.6	17.4
3	10	221.3	205.6	15.7
2	15	220.9	206.1	14.8

Mean of 10,000 random samples of pigs from 1260 head barn with 19 pens with 56 to 81 pigs/pen (weight 213.5)

Methods of sampling a barn to determine standard deviation (30 pig sample)

95% confidence interval

Pigs/pen	Pens	Upper, lb	Lower, lb	Range, lb
15	2	27.5	14.6	12.9
10	3	27.9	15.0	12.9
6	5	27.6	15.3	12.3
5	6	27.6	15.3	12.3
3	10	27.5	15.8	11.6
2	15	27.3	15.9	11.4

Mean of 10,000 random samples of pigs from 1260 head barn with 19 pens with 56 to 81 pigs/pen (SD = 21.5)

Normal distribution of pig weights in a barn Mean = 213.5 lb, Standard Deviation = 21.5 lb

Normal distribution of pig weights in a barn Mean = 213.5 lb, Standard Deviation = 21.5 lb

What is immunological castration?

- Temporary immunological suppression of testicular function (late in life) as an alternative to surgical castration (early in life) to control 'boar taint'
- Mode of action is induction of antibodies to endogenous GnRF which temporarily blocks pituitary-gonadal endocrine axis
- Or stated another way "blocks communication between the brain and the testicles"

What is the advantage of immunological castration late in life?

- Boars are more feed efficient and have a higher lean meat yield compared to barrows
- Immunological castrated male pigs spend a large proportion of their life as boars
- Immunological castration temporarily blocks production of sexual hormones that are the cause of "boar taint"

What products are available for immunological castration in the US?

- Improvest Pfizer Animal Health
- FDA Approved/Not widely available commercially
- First product available in it's class in the US
 - 5 year exclusivity

How is immunological castration late in life performed?

- Requires two injections
- First injection primes the immune system but full testicular and reproductive function is retained
- Second injection induces a strong immune response that causes temporary suppression of testicular function

Biology of Immunological castration

Aniti-GnRF antibodies in immunocastrates (Improvest) compared to barrows and boars

Source: FDA NADA 141-322

Knowledge ^{for}Life

How effective is immunological castration?

- Reduces circulating testosterone
- Reduces chemical responsible for "boar taint"

Serum testosterone in immunocastrates (Improvest) compared to barrows and boars

Source: FDA NADA 141-322

Knowledge ^{for}Life

Olfactory scores from cooked meat from immunocastrates (Improvest) compared to barrows and boars

Source: FDA NADA 141-322

Knowledge ^{for}Life

Influence of Improvest and lysine level on F/G d 55 to 160

Influence of Improvest and lysine level on carcass weight, lb

Influence of Ractopamine and Improvest on average daily gain

General information about Improvest?

- How applied:
 - Injection, subcutaneous under the skin
 - Two doses at least 4 weeks apart
 - First dose can be more than 4 weeks prior to the second injection
- Slaughter window is a minimum of 4 weeks and up to 8 weeks after the 2nd injection

Knowledge ^{for}Life

General information about Improvest

- Availability Only by veterinary prescription due to precautions for human user safety
 - Use a safety injector
 - Accidental self injection can interfere with reproductive function of men and women
 - Proper training for administration critical
- Withdrawal none when used according to label, no evidence of tissue residues

Knowledge ^{for}Life

Key Take Home Points

- Requires effective injection administration
- Requires dietary adjustments
 - Feed like boars up to second injection
 - Feed like barrows after second injection
- ADG and feed efficiency for immunocastrates after second injection is better than barrows
- Carcass yield is decreased
- Packer contracts are containing clauses to require notification of use

Knowledge forLife

Thank You!

KSU Swine Day 2011

Morning – Finisher pigs

Afternoon – Nursery and sows

- Vitamin D research
- New KSU premix recommendations
- Nursery diet ingredients
- Feed processing

Vitamin D – The Nutritionist Perspective

History

- University Research Herd
- Omission of all supplemental Vitamin D from premix
- Kyphosis "Humpback" out break
- Signs first observed in growing pigs fed research diets marginal with Ca/P

Nursery growth rate from weaning at 4 weeks of age until 9 weeks

Kyphosis – 9 wk of age

Rortvedt et al., 2010

Knowledge ^{for}Life

Kyphosis – 13 wk of age

All pigs fed 0.40 aP diets from wk 9 to 13

Rortvedt et al., 2010

Knowledge forLife

Exp. 2. Vitamin D at 0 or 280 IU/kg with four calcium/phosphorus regimens

	Calcium:	Low	High	Low	High
Diet	Phosphorus:	Low	Low	High	High
Ca, %		0.53	1.05	0.53	1.05
P, %		0.57	0.57	0.72	0.72
Available P, %	6	0.25	0.25	0.40	0.40
Ca:P		0.93	1.86	0.74	1.47
Ca:aP		2.2	4.3	1.3	2.7

Low Ca = 75% NRC High Ca = 150% NRC Low P = 95% NRC High P = 120% NRC

Vitamin D/Ca/aP on nursery pig growth

Vitamin D/Ca/aP on bone mineral density

What does this mean?

- Dietary vitamin D supplementation is clearly necessary
- Increases growth rate and bone mineralization
- As expected, marginal dietary Ca and P affect growth rate and bone mineralization
- Supplementing additional Ca and P is not as effective without vitamin D supplementation
 - Confirms vitamin D is necessary for Ca and P absorption

Comparison of vitamin D recommendations

Source, IU/kg	NRC, 1998	NSNG, 2010	KSU
Gestation	200	660	1378
Lactation	200	660	1378
Early nursery	220	660	1378
Late nursery	200	660	1378
Grower	150	550	827
Finisher	150	440	551
Paylean phase	150	550	413

Effects of Oral Vitamin D3 Supplementation

Flohr et al., 2011

Heartland *Assays*

Effect of oral vitamin D_3 on lactation phase piglet growth rate (d 2 to 20)

Effect of oral vitamin D_3 on pig weaning weight (d 20)

Vitamin D₃

al., 2011 Knowledge

Effect of oral vitamin D_3 on nursery phase piglet growth rate (d 20 to 52)

Effect of oral vitamin D₃ on pig weight (d 52)

Flohr et al., 2011

Effect of oral vitamin D₃ on bone ash (d 19)

Flohr et al., 2011

Knowledge ^{for}Life

Effect of oral vitamin D₃ on serum 25(OH)D3

Flohr et al., 2011

Knowledge ^{for}Life

Steps to ensure vitamin D is supplemented correctly (and other vitamins and trace minerals):

- Develop clear premix specifications
- Use reputable premix suppliers
- Verify premix production batch sheets
- Ensure product rotation
- Separate vitamin and trace mineral premix
- Verify premix additions
 - Inventory control
 - Eliminate hand adds
- Evaluate mixer efficiency
- Consider premix testing

Changes made to diets for pigs <15 lb

- Lower lysine levels
- Eliminate fishmeal / Add DDGS
- Single "Phase 1" Diet

Available at www.KSUswine.org

Field validation of diets for < 15 lb pigs D 0 to 34 ADG

Field validation of diets for < 15 lb pigs D 0 to 34 F/G

Field validation of diets for < 15 lb pigs D 0 to 34 feed cost per lb of gain

Field validation of diets for < 15 lb pigs D 0 to 34 income over feed cost

2012 KSU premix and base mix recommendations

Changes:

- Phytase specified in coated forms
- At least 50% of vitamin D as A/D cross-linked beadlet
- Natural vitamin E offered at 2:1 bioequivalency
- Decreased iron levels
- Decreased zinc levels
- Decreased manganese levels
- Official change date of January 1, 2012

Influence of natural vitamin E on sow plasma α-tocopherol at weaning

Influence of natural vitamin E on piglet plasma α-tocopherol at weaning

Estimated relative bioavailability of natural vs synthetic vitamin E

Based on synthetic level:	44 mg/kg	66 mg/kg	
Sow Plasma			_
D 100	2.1	2.4	Varies depending
Farrowing	4.2	3.0	on the response
Weaning	2.7	2.4	criteria but is
Weaned Piglet			greater than the
Plasma	3.0	5.1	standard value of
Heart	1.8	5.3	1.36 in sows.
Liver	2.0	7.5	
Sow Colostrum	3.0	2.9	
Sow milk	1.6	7.3	

Amino acid requirement of nursery pigs

- Recent years:
 - Lysine levels
 - Ratios of other amino acids to lysine
 - Thr, Met&Cys, Iso, Val, CP:Lys
- 2011
 - Lysine source
 - Trp:Lys ratios (5 studies)

Effect of Trp:Lys ratio on ADG from 13 to 22 lb

Tryptophan:lysine ratio, %

Effect of Trp:Lys ratio on F/G from 13 to 22 lb

Tryptophan:lysine ratio, %

Effect of Trp:Lys ratio on F/G from 13 to 24 lb

Tryptophan:lysine ratio, %

Influence of SID Trp:Lys ratio on margin over feed

Influence of amino acid source on lysine requirement

Influence of amino acid source on margin over feed

Wheat Middlings

- During the wheat milling process, about 70 to 75% of the grain becomes flour, leaving 25 to 30% as wheat byproducts, one of these byproducts is wheat middlings.
- Wheat midds can be valuable to swine diets because of their protein, phosphorus and moderate energy content.
 - 16% CP; 89% the ME value of corn;
- Typically, 100 lb of wheat midds will replace 86.5 lb of corn, 12 lb of high protein soybean meal, and 1.5 lb of monocalcium phosphate.
- This will decrease the energy content of the diet marginally by approximately 15 Kcal ME/ton (equivalent to 0.50% added fat).

Effect of wheat midds on nursery ADG (Exp. 2; 26 to 54 lb)

Effect Wheat Midds on nursery F/G (Exp. 2; 26 to 54 lb)

Effect of wheat midds on nursery ADG (Exp. 3; 15 to 48 lb)

Effect of wheat midds on nursery F/G (Exp. 3; 15 to 48 lb)

Wheat Midds and Nursery Diet Summary

- Feeding increasing midds to 12-50 lb pigs consistently lowered ADG which was driven by either reduced ADFI and higher F/G
- Effects were minimal until over 10% midds were added to the diet.
- Evaluating wheat middlings economics on an IOFC basis is important when valuing in rations for nursery and finishing pigs

Effect Of XFE Liquid Energy and Choice White Grease on Nursery ADG (Exp. 1; 27 to 57 lb)

Effect of XFE Liquid Energy and Choice White Grease on Nursery F/G (Exp. 1; 27 to 57 lb)

Effect of AV-E Digest and XFE Liquid Energy on Nursery ADG (Exp. 3; Day 0 to 9)

Effect of AV-E Digest and XFE Liquid Energy on Nursery F/G (Exp. 3; Day 0 to 9)

Effect of AV-E Digest and XFE Liquid Energy on Nursery ADG (Exp. 3; Day 9 to 23)

Effect of AV-E Digest and XFE Liquid Energy on Nursery G/F (Exp. 3; Day 9 to 23)

Knowledge ^{for}Life

Effect of AV-E Digest and XFE Liquid Energy on Nursery Pig Performance (Exp. 3; Day 23 to 44)

Effect of AV-E Digest and XFE Liquid Energy on Nursery Pig Performance (Exp. 3; Day 0 to 44)

Effect of AV-E Digest and XFE Liquid Energy on Nursery Pig Performance (Exp. 3; Day 0 to 44)

Liquid Energy and AV-E Digest Summary

Liquid Energy:

- No F/G response
- Mixed ADG response
- While the actual energy value is unknown, it cannot directly substitute added fat and maintain similar performance.

AV-E Digest:

- Can be used as a replacement for other animal specialty proteins sources in Phase 2 (15-25 lb) nursery diets.
- More research is needed validating AV-E as a SDAP replacement in Phase 1 diets due to the lack of growth response for pigs fed diets with plasma over the negative control.

Update on Feed Processing Research

Effects of sorghum particle size in finishing pig diets

Paulk et al., 2011

Knowledge forLife

Effects of sorghum particle size in finishing pig diets

Paulk et al., 2011

Knowledge forLife

Particle size of sorghum to have same F/G as corn

Effects of particle size on feed efficiency

Effect of regrinding dried distillers grains with solubles on growth performance in finishing pigs

95 micron difference in DDGS particle size

De Jong et al, 2011

Knowledge ^{for}Life

Effects of pelleting on growth performance of grow-finish pigs 1969 to 1999

	Meal		Pellet	
Reference	ADG	F/G	ADG	F/G
NCR-42 (1969)	1.70	3.23	1.72	3.13
Hanke et al. (1972)	1.65	3.45	1.76	3.23
Baird (1973)	1.52	3.70	1.59	3.42
Tribble et al. (1975)	1.46	3.77	1.50	3.44
Harris et al. (1979)	1.34	3.83	1.46	3.55
Tribble et al. (1979)	1.37	4.10	1.54	3.66
Erickson et al. (1980)	1.54	3.03	1.74	2.70
Skoch et al. (1983)	1.70	3.10	1.85	2.91
Wondra et al. (1993a)	1.83	3.64	1.98	3.46
Van Heugten (1997)	1.59	2.14	1.64	2.02
Van Heugten (1997)	2.17	2.89	2.07	2.70
Brumm (1998)	1.76	3.13	1.81	2.94
Johnston et al. (1999)	2.01	3.03	2.18	2.86
Average	1.66	3.31	1.76	3.08

Average response = 5.6% for ADG and 7.0% for F/G

Effects of pelleting on growth performance of grow-finish pigs 2005 to 2011

	Meal		Pellet	
Reference	ADG	F/G	ADG	F/G
Groesbeck et al. (2005)	0.83	1.25	0.90	1.22
Groesbeck et al. (2005)	0.62	1.43	0.65	1.37
Groesbeck et al.(2006)	0.80	1.25	0.78	1.17
Potter et al. (2009)	1.95	2.12	2.05	2.07
Potter et al. (2009)	1.92	2.83	2.04	2.68
Myers et al. (2010)	1.81	2.76	1.94	2.82
Potter et al. (2010)	1.92	2.86	2.03	2.70
Frobose et al. (2011)	1.46	1.72	1.43	1.63
Frobose et al. (2011)	1.29	1.51	1.38	1.40
Myers et al. (2011)	1.96	2.73	1.97	2.67
Paulk et al. (2011)	2.50	2.75	2.63	2.55
Paulk et al. (2011)	2.31	2.50	2.44	2.40
Average	1.61	2.14	1.69	2.06

Average response = 5.0% for ADG and 4.0% for F/G

Effect of diet form on overall ADG and F/G 40% fines

Effect of diet form on overall ADG and F/G 4% fines

Effects of feeder adjustment and pellet quality on ADG

Effects of feeder adjustment and pellet quality on F/G

Pellet quality

Pellets with fines

Good quality pellets

Nemecheck et al. 2012

Knowledge ^{for}Life

Future feed processing needs

- Particle size
 - Effects of fine particle sizes (< 500 microns)
 - Grinding of ingredients or complete diet
- Pelleting
 - Pellet quality standards
 - Expanding
- Feeder by pellet quality interaction

Thank You!

