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Welcome to ‘Progress on the Prairie’! 

On behalf of Kansas State Research and Extension and the Department of 
Animal Sciences and Industry it is my pleasure to welcome you to the 48th 
Beef Improvement Federation Annual Meeting and Research Symposium. We 
hope that you’ll enjoy your time in the beautiful Flint Hills of Kansas and here 
in Manhattan, home to the K-State Wildcats!  

This year’s meeting is titled ‘Progress on the Prairie.’ The general sessions are 
designed to highlight some of the significant genetic improvements beef 
cattle producers have made over time and to help envision the future of the 
beef value chain. The speaker line-up features industry leaders and experts 
that will help us understand the changing beef consumer landscape here in 
the US and internationally. Recognizing the importance of the cow-calf sector 
in managing the landscape and building beef, speakers will highlight our 
current production capacity and needed improvements to ensure producer 
profitability and sustainability while satisfying consumers around the world.  

Afternoon break-out sessions feature speakers covering a vast range of beef 
genetics topics including new genomics and genetic evaluation tools, 
improving feed efficiency, documenting the value of genomic testing and 
exploring genetic susceptibility to respiratory disease and heat stress.  

Young producers should be sure to attend the young producer symposium on 
the afternoon of Tuesday, June 14. The session is designed to help young 
producers build, maintain and use their professional network, keep a healthy 
ranch work/family balance and design business plans that enable them to 
start a business or return to a family farm or ranch. 

Sponsorship has played a substantial role in making this meeting possible. 
Please take a moment to thank representatives of these businesses and trade 
groups for their support of BIF. We truly appreciate their ongoing investment. 

Please don’t hesitate to contact one of the K-State hosts if we can be of 
assistance to you during your stay in Manhattan. We are delighted you are 
here! We hope you enjoy the meeting and social events, learn a lot, and 
engage your friends and colleagues in lively discussion about the genetic 
improvement of beef cattle! 

Kind regards, 

Robert L. Weaber, Ph.D. 
Associate Professor, Cow-calf Extension Specialist 
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All events at the headquarters hotel unless noted.

Tuesday, June 14, 2016
7 a.m.	 BIF Board Meeting

10:30 a.m. - noon	 International Genetic Solutions Cattlemen’s Seminar  
(pre-conference event, no registration required)

Noon - 5 p.m.	 Registration opens, Hilton Garden Inn conference center foyer

1 - 4:30 p.m.	 Young Producers Symposium and Reception
	 Getting the most out of a meeting: building, maintaining and using your professional network 

Dr. Michael Johll and Jeff Sleichter, Suther Feeds
                                   Balancing ranch and family: keys to success  

Debbie Lyons-Blythe, Blythe Angus, White City, KS
	 Growing a new or expanding a family business to make a place for YOU! Tips and strategies 

that have helped build businesses for these ranchers
	 C.J. Blew, Chairman, MKC Cooperative, and rancher/farmer, Castleton, Kansas
	 Spencer Jones, Flint Hills Heifer Development/ Jones Family Angus, Wamego, Kansas
	 Toby Jordan, Waukaru Polled Shorthorns, Rensselaer, Indiana
	 Matt Perrier, Dalebanks Angus, Eureka, Kansas
	 Don Schiefelbein, Schiefelbein Farms, Kimball, Minnesota

6:00 - 8:30 p.m.	 Registration, Weber Hall main west foyer

6:30 p.m.	 Opening Dinner and Social, K-State Campus, Weber Arena 
Shuttle buses depart Hilton Garden Inn east entrance at 6 p.m.; Last bus returns at 9:30 p.m.

Wednesday, June 15, 2016
6:30 a.m. - 5 p.m.	 Registration, Hilton Garden Inn conference center foyer

7 - 8:30 a.m.	 Conference Breakfast, hotel foyer

8 a.m.	 Opening Comments, Kansas Welcome

9:45 - 11:45 a.m.	 Accompanying Persons Guided Tour of Flint Hills Discovery Center 
(walk to tour location [1 block] depart as group from hotel lobby)

General Session I: Opportunities for the Beef Value Chain: Can We Become More Efficient and More Profitable?
Moderator: Mr. Dave Weaber, VP of EMI Analytics, Beef, Express Markets, Inc.

8:15 - 8:45 a.m.	 What will the North American beef market look like 20 years from now: opportunities for 
domestic and international growth 
Dr. Glynn Tonsor/Dr. Ted Schroeder, Kansas State University

8:45 - 9:15 a.m.	 Beef as a consumer driven food business: Changing perspectives from cattle to food production 
Dr. John Stika, Certified Angus Beef

9:15 - 9:45 a.m.	 Who’s our consumer and what do they want 20 years from now? Trends in the protein landscape 
Dr. Brad Morgan, Performance Food Group

9:45 - 10:15 a.m.	 Break

10:15 - 11 a.m.	 Genetics of meat science: what traits can we improve that affect the value/palatability of beef? 
Dr. Keith Belk, Colorado State University 

11 - 11:45 a.m.	 Panel discussion of General Session I speakers

Schedule of Events
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Noon	 Awards Luncheon 
Presentation of BIF Commercial Producer, Continuing Service and Ambassador Awards, Frank 
Baker and Larry Cundiff Scholarships

2 - 4 p.m.	 Accompanying Persons Tour of Flint Hills Discovery Center, Education Symposia: “The role 
of fire and grazing management in the conservation of the tall grass prairie” 
(walk to tour location [1 block] depart as group from hotel lobby)

2 - 5:30 p.m.	 Break-out Sessions

	 Advancements in Emerging Technology 
Chair: Dr. Megan Rolf, Kansas State University

	 2 - 2:45 p.m.	 Comparative genomics and metagenomics: systems biology of bovine
		  metabolism and of its ruminal symbionts
		  Dr. Gavin Conant, University of Missouri
	 2:45 - 3:30 p.m.	 RNA interference: will the overlooked nucleic acid be the new star
		  among animal health technologies? 

	 Dr. Barry Bradford, Kansas State University
	 3:30 - 4 p.m.	 Break
	 4 - 4:45 p.m.	 Rumen microvirome
		  Dr. Samodha Fernando, University of Nebraska-Lincoln
	 4:45 - 5:30 p.m.	 Use of IVF technology and genomic selection for rapid beef cattle improvement 

	 Dr. Mark Allen, TransOva

	 Advancements in End Product Improvement 
Chair: Dr. Tommy Perkins, International Brangus Breeders Association

	 2 - 3 p.m.	 The beef yield grading system - it’s history, current status and future 
	 Dr. Ty Lawrence, West Texas A&M University

	 3 - 4 p.m.	 Live animal measures of tenderness 
	 Dr. Rhonda Vann, Mississippi State University

	 3:30 - 4 p.m.	 Break
	 4 - 5:30 p.m.	 Breeder panel - carcass cata, ultrasound data or DNA 

	 Dick Beck, Three Trees Ranch, Sharpsburg, Georgia 
	 Jan Oleen, Oleen Brothers, Dwight, Kansas 
	 Vernon Suhn, Suhn Cattle Company, Eureka, Kansas

	 Advancements in Selection Decisions 
Chair: Dr. Bob Weaber, Kansas State University 
Genetic Improvement of Feed Efficiency in Beef Cattle-Findings of a USDA Funded 
Integrated Project

	 2 - 2:30 p.m.	 Project overview/objectives; genomics and RNA project discoveries 
	 Dr. Jerry Taylor, University of Missouri

	 2:30 - 3 p.m.	 Gene set enrichment analysis for feed efficiency in beef cattle 
	 Dr. Holly Neibergs, Washington State University 

	 3 - 3:30 p.m.	 Effects of timing and duration of test period and diet type on intake
		  and feed efficiency in Charolais-sired cattle 

	 Dr. Dan Shike, University of Illinois
	 3:30 - 4:00 p.m.	 Feed efficiency and the microbiota of the alimentary tract 

	 Dr. Harvey Freetly, US-MARC
	 4 - 4:30 p.m.	 Effects of diet digestibility on feed efficiency and impact of diet
		  type and feeding phase on repeatability of feed efficiency phenotype 

	 Dr. Stephanie Hansen, Iowa State University
	 4:30 - 4:45 p.m.	 Results of survey of stakeholders regarding knowledge of and attitudes 

	 towards feed intake, efficiency and genetic improvement concepts
		  Dr. Bob Weaber, Kansas State University
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	 4:45 - 5:15 p.m.	 Extension demonstration project outcomes; Industry adoption and
		  translation of project deliverables 

	 Dr. Matt Spangler, University of Nebraska-Lincoln
	 5:15 - 5:30 p.m. 	 Question and answer session

6:30 p.m.	 Evening Social/Dinner, Stanley Stout Livestock Marketing Center, K-State Campus  
Shuttles depart Hilton Garden Inn east entrance beginning at 6 p.m.; Last bus returns at 9:30 p.m.

Thursday, June 16, 2016
7 a.m. - noon	 Registration, Hilton Garden Inn conference center foyer

7 - 8:30 a.m.	 Conference Breakfast, hotel foyer

9 - 11:45 a.m.	 Accompanying Persons Guided Tour of the Marianna Kistler Beach Museum of Art, 
K-State Campus.  
(Depart from hotel lobby as group, board vans at east entrance of Hilton Garden Inn., 
refreshments served)

General Session II: Protecting Producer Profit for the Future 
Moderator: Dr. Matt Spangler, Associate Professor and Extension Specialist, University of Nebraska

8 - 8:15 a.m.	 Call to order/housekeeping announcements

8:15 - 8:45 a.m.	 The 2016 and the 2036 cow herd, what we do and what we need to do better 
Dr. Dave Lalman, Oklahoma State University

8:45 - 9:15 a.m.	 Things a cow-calf producer learns when you own a feed yard: what drives profit  
Chip Ramsay, Rex Ranch

9:15 - 9:45 a.m.	 Growing profit by understanding cow maintenance efficiency and maintenance 
requirement in an animal and systems context 
Dr. Mark Enns, Colorado State University

9:45 - 10:15 a.m.	 Break

10:15 - 11 a.m.	 Making the cow herd more efficient and profitable by 2036: Where do we focus our efforts 
for the biggest impact?  
Dr. Clay Mathis, King Ranch Institute for Ranch Management

11 - 11:30 a.m.	 Panel discussion with General Session II speakers

11:30 a.m. - Noon	 BIF Caucuses and Elections

Noon - 1:30 p.m.	 Awards Luncheon 
Conference wrap-up: call to action, Dr. Kent Andersen, Zoetis, Presentation of BIF Pioneer and 
Seedstock Producer Awards, Roy Wallace Scholarship, Introduction of newly elected BIF Board 
of Directors, Invitation to BIF 2017

2 - 5:30 p.m.	 Break-out Sessions
	 Advancements in Genomics and Genetic Prediction 

Chair: Dr. Mark Thallman, USDA-ARS-MARC
	 2 - 2:45 p.m.	 Bolt and an alternative approach to genomic EPDs 

	 Dr. Bruce Golden, Theta Solutions, LLC
	 2:45 - 3:30 p.m.	 EPDs and Risk 

	 Dr. Dale Van Vleck, U.S. Meat Animal Research Center (retired)
	 3:30 - 4 p.m.	 Break

Schedule of Events

6



7

	 4 - 4:45 p.m.	 Selection enhanced tenderness marker effects on means and variances
		  of beef tenderness 

	 Dr. J.R. Tait, U.S. Meat Animal Research Center
	 4:45 - 5:30 p.m.	 Accounting for discovery bias in genomic prediction 

	 Jamie Parham, University of Nebraska

	 Advancements in Producer Applications 
Chair: Dr. Darrh Bullock, University of Kentucky

	 2 - 2:45 p.m.	 Breeding objectives indicate value of genomics for beef cattle 
	 Dr. M. D. MacNeil, Delta G

	 2:45 - 3:30 p.m.	 Using genomic tools in commercial beef cattle: taking heifer selection
		  to the next level 

	 Dr. Tom Short, Zoetis
	 3:30 - 4 p.m.	 Break
	 4 - 4:45 p.m.	 Genomics: return on investment - fact or fiction? 

	 Dr. Tonya Amen, Dr. Michael Bishop, Dr. Andre Eggen, Illumina, Inc.
	 4:45 - 5:30 p.m.	 Panel Discussion

	 Advancements in Efficiency and Adaptability 
Chair: Dr. Mark Enns, Colorado State University

	 2 - 2:50 p.m. 	 Identifying genetic differences in susceptibility to BRD: Results from the
		  USDA-NIFA CAP grant 

	 Dr. Holly Neibergs, Washington State University  
	 2:50 - 3:20 p.m.	 Guidelines for collection of bovine respiratory disease data 

	 Dr. Larry Kuehn, USDA-Meat Animal Research Center 
	 Dr. R. Mark Enns, Colorado State University 

	 3:20 - 3:50 p.m.	 Break
	 3:50 - 4:10 p.m.	 Genetic Evaluation for Heat Tolerance in Angus Cattle
		  Heather L. Bradford, University of Georgia
	 4:10 - 4:30 p.m.	 Prototype Stayability Analysis using a Random Regression Approach 

	 Dr. Scott E. Speidel, Colorado State University 
	 Dr. Bruce L. Golden, Theta Solutions, LLC

	 4:30 - 5:15 p.m.	 Revised feed intake data collection guidelines 
	 Dr. Robert Weaber, Kansas State University

5:30 - 6:30 p.m.	 BIF Board Meeting and Board Photo

6:30 - 8:30 p.m.	 Closing Reception on Blue Earth Plaza (adjacent to Hilton Garden Inn; hors d’oeuvres and 
drinks) and tour the Flint Hills Discovery Center (admission paid by conference)

Friday, June 17, 2016
7 a.m.	 Tour of Recent BIF Seedstock Producer of the Year Recipients 

McCurry Angus, Mushrush Red Angus, Moser Ranch, Fink Beef Genetics

	 Tour of Recent BIF Seedstock Commercial Producer of the Year Recipients 
Tailgate Ranch, Woodbury Farms, Kniebel Cattle Co.

	 Coach buses/vans for tours depart east entrance of Hilton Garden Inn. Tours include 
breakfast, lunch and dinner, beverages, and transportation. Tours will return to conference 
hotel by approximately 9 p.m.
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Session Moderator
Dave Weaber joined EMI Analytics 
and Express Markets Inc. in April 
2016 as vice president and is 
responsible for leading and growing 
the company’s efforts in beef supply 
chain analytics. This includes supply 
and demand side analysis and 
forecasting of cattle numbers and 
beef supplies as well as domestic and 
international trade impacts. 

Before joining Express Markets, Dave served as 
economist, leading the Market Insights Team in the 
Strategic Sourcing and Supply Chain Analytics Group 
of Delhaize America, the eleventh largest grocery 
retailer in the U.S. From February 2005 through March 
2007, Dave was employed by Swift & Co, as Director 
of Market Analysis. He was responsible for market 
research and forecasting in the cattle, beef, hog and 
pork markets as well tracking changes in the other 
commodity and competing meat markets. Dave also 
worked in the analysis of foreign markets and trade. 

Prior to joining Swift & Co., Dave spent seven years 
at Cattle-Fax. Dave earned both his bachelor’s and 
master’s degrees from Colorado State University.

Glynn Tonsor is an Associate 
Professor in the Department of 
Agricultural Economics at Kansas 
State University (KSU). He grew up 
on a farrow-to-finish swine farm 
in Monroe City, Missouri. Tonsor 
obtained a B.S. from Missouri State 
University and Ph.D. from KSU. He 
was a faculty member at Michigan 
State University from May 2006 to 

March 2010 when he joined the KSU faculty.
Tonsor has broad interests and experiences which 

span issues throughout the meat supply chain. 
Through active research, engaged outreach with 
industry, and first-hand knowledge with livestock 
production, Glynn has economic expertise in an 
array of topics of importance to Kansas, U.S. and 
global stakeholders. These topics include animal 
identification and traceability, animal well-being 
and welfare, commodity market analysis, consumer 
demand, food safety, meat labeling policies, producer 
perceptions and preferences, risk management, and 
technology acceptance. Glynn’s integrated research 
and extension program has resulted in multiple 
journal article publications and numerous outreach 
contributions.

Ted Schroeder knows that food for 
tomorrow depends on understanding 
the future of the livestock and grain 
industries.

Schroeder, an agricultural 
economist, studies livestock and meat 
marketing as well as price analysis 
to provide information and direction 
for the livestock and grain industries. 
His research focuses on improving 
commodity market efficiency by investigating 
price discovery methods, improving market 
coordinating mechanisms, evaluating market risk and 
understanding complexities of global meat demand.

He has received more than $4.2 million in funding 
from organizations such as the Department of 
Homeland Security, the Department of Agriculture, 
the U.S. Meat Export Federation and the National 
Cattlemen’s Beef Association. He has more than 
100 refereed journal publications. Schroeder is the 
founding director of the Kansas State University 
(K-State) Center for Risk Management Education 
and Research. He also teaches risk management and 
agricultural marketing courses.

Schroeder has a bachelor’s degree in agricultural 
economics from the University of Nebraska and a 
doctorate in agricultural economics from Iowa State 
University. He began his career at K-State in 1986.

As president for the Certified Angus 
Beef ® brand, John Stika, guides 
grassroots programs to deliver 
premium beef from family farmers 
and ranchers to consumers’ dinner 
tables. He has led the brand through 
nine consecutive years of record 
sales, reaching 896 million pounds in 
fiscal 2015, to satisfy growing demand 
for great tasting beef in more than 
15,000 restaurants and grocery stores worldwide.

John grew up on a small family farm in Kansas, and 
earned bachelor’s and master’s degrees from KSU 
and doctorate in meat science from the University 
of Kentucky. He joined the CAB LLC staff in February 
1999 as director of feeder-packer relations, and then 
director of packing and supply development.

Moving on to vice president of business 
development, he led sales growth through retail, 
foodservice, international and value-added products 
before becoming president.

In 2010, John received the Outstanding Young 
Alumnus Award from K-State’s College of Agriculture 
and the Achievement Award from the American Meat 
Science Association.

Speakers: General Session I
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J. Brad Morgan was reared in the 
ranch and oil community of Antlers, 
Oklahoma. He received his bachelor’s 
in animal science from Oklahoma 
State University (1985), his master’s 
in meat science from the University 
of Nebraska–Lincoln (1988) and his 
Ph.D. in animal science from Texas 
A&M University (1991). Brad was an 
Assistant Professor and Extension 

Meats Specialist at Colorado State University from 
1991 to 1995 where he was part of the inaugural 
National Beef Quality Audit. 

In 1995, Morgan joined the Animal Science faculty at 
Oklahoma State University. He taught undergraduate 
and graduate meat science courses and conducts 
research on the quality, quantity, safety, and 
usefulness of meat and meat products. Morgan’s 
research and expertise in meat tenderness and 
color is known nationally and internationally. He has 
conducted research for companies such as Wal-Mart, 
National Beef and the U.S. Meat Export Federation. 

One of Morgan’s last research interests focused 
on development, verification and implementation of 
the OSU Tenderness Prediction System. Morgan has 
attracted over $22.5 million in extramural funding, 
published more than 80 journal articles, given over 
1,700 invited presentations, and conducted research in 
29 countries. Morgan has received numerous research 
and teaching awards including the Outstanding 
Teaching Award from the American Meat Science 

Association along with the Outstanding Scientist in the 
Division of Agriculture at Oklahoma State University. 
Morgan is the past president of the American Meat 
Science Association and is currenlty the senior 
director of protein for Performance Food Group. 

Keith Belk is a Professor and 
Holder of the Ken & Myra Monfort 
Endowed Chair in Meat Science with 
the Center for Meat Safety & Quality, 
Department of Animal Sciences, 
Colorado State University (CSU). 
He earned bachelor’s and master’s 
degrees from CSU, and his doctorate 
from Texas A&M University. He 
has been employed in the private 
sector as a buyer by Safeway, Inc., and by the USDA 
Agricultural Marketing Service in Washington, D.C., as 
an International Marketing Specialist. 

At CSU since 1995, he has authored or co-authored 
200 refereed scientific journal articles and more than 
740 total publications, generated more than $18M in 
external funding, and was the primary inventor on 
two patents. 

He served as the state Meat Extension Specialist 
between 1995 and 2000, on the Editorial Board for 
the Journal of Animal Science in 1997-2000, on the 
Board of Directors for the American Meat Science 
Association (AMSA) between 2003-2005, and as 
President of AMSA in 2009-2010. 

Beef Improvement
Federation

Make plans to attend next year’s

Annual Convention
May 31 - June 3, 2017

Athens, Georgia

www.beefimprovement.org
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Who’s Our Consumer and What Do They Want 20 Years from Now?
Trends in the Protein Landscape

J. Brad Morgan, Performance Food Group

Introduction
It is no secret that the protein category has seen challenges over the last five years. The most recent 

Technomic Center of the Plate Beef and Pork Report (Technomic, 2014) reveals fresh meat shopping trips by today’s 
consumer have declined. This may, to some degree, be attributed to a continual rise in red meat prices since 2010. 
Who knows, this may be a result of fuel prices, dual outside the home working families or simply just the number of 
hours in a day. However, don’t be fooled, the slight dip in demand does not mean today’s consumers have stopped 
craving red meat. With 97 percent household penetration, consumers still plan meals and special occasions around 
red meat proteins. One must remember that today’s shopper in fact we must first understand and appreciate 
everything that has changed around them. While it is true that the millennial generation has driven this growth, 
these dynamic and interesting changes expand well beyond them. More than 80% percent of consumers, ages 18-64, 
have access to the internet, with that number growing to over 93 percent for those under the age of 50. For most 
easy access is strapped to their belt or carried in purse. In 2015, it is estimated that 78 percent of consumers have 
a smartphone and over 40 percent of consumers own a tablet device. With these advancements in technology, it 
becomes important to remember the 5 “M’s” associated with today’s consumer and the protein that we are providing 
them. 

MEAT LOVERS: According to findings of a propriety study (Cargill Proprietary Red Meat Consumer Study, 
2015), true meat lovers have a passion for food, and they know what cuts to buy and how to prepare fresh meat. 
Quality is foundational for this segment. This group searches the meat case for beef cuts with high flavor and marbling 
and is willing to open their wallets to pay for the best. These consumers are primarily females’ age 45-64 who are 
either retired or have higher household incomes and represent one-third of all dollars spent in the fresh red meat 
category. They have more time to prepare meals featuring red meat and have a tendency to bring people together 
to enjoy a high-quality dining experience. Baby Boomers (born 1946-1964) that prepare beef six or more times per 
month are considered true meat lovers and tend to be our most loyal consumers. Quality-conscious Baby Boomers 
mainly purchase red meat to connect with others through a special occasion. Confident in the kitchen, this group has 
a passion for food, knows what cuts to buy and knows how to prepare fresh red meat. Alternatively, value-conscious 
Baby Boomers often purchase red meat as part of their routine. Also experienced in the kitchen, they are very 
comfortable with shopping for, and preparing, red meat. 

MILLENNIALS: What may be somewhat surprising is how important Millennials (born 1981-1996) are to 
the future growth of the red meat category. While Millennial budgets and kitchen experience is limited at the current 
moment, over the next 20 years, they are going to gain experience and confidence in purchasing and preparing red 
meat products. Some published reports suggest this group will be the only generational group that plan on spending 
more on all red meats next year compared to this year. This is certainly one of the reasons why many companies are 
directing their efforts at communicating with this particular group of consumers. This generational group shares 
similar motivations with Generation X (born 1965-1980), but because they are at a different income threshold and life 
stage, their behaviors do not always align. Millennials look for nontraditional sources of information about preparing 
food, complementing cuts and the latest trends that help support their busy lifestyles. Make no mistake, this younger 
fresh meat user thinks and acts differently than older, more confident users the industry knows. Keeping Millennials 
engaged in the fresh meat case will require a shift in thinking from product mix, rethinking the role brands play, how 
the case is merchandised and priced, and what role value added products play in helping get meals to the table to 
meet the demands of a busy lifestyle. 

MOTIVATION: It is not enough to know our consumers, but we must also understand the motivations behind 
why they are buying red meat and what they want from the experience. Obviously, consumers desire a consistent 
eating experience and one way of motivating protein sales is creating a branded program that tells a story. This 
story (i.e., “brand”) must not try to educate the consumer, but connect with the consumer and provide transparency 
associated with all aspects of the brand. A study conducted by Deloitte (Deloitte, 2015) revealed that consumers 
still want protein products that are affordable, taste good and convenient, but they are using a new set of evolving 
factors to make their protein purchases. These new motivational ideas include transparency factors that concentrate 
on social impact (It is not enough for a company to sell products consumers want at prices they are willing to pay, 
companies are now expected to demonstrate that they care about more than just profits), safety, health, animal well-
being and sustainability. Additional research dealing with transparency (Maslansky and Partners, 2013) determined 
that 78% of consumers claimed it is very important for retail and foodservice entities to provide information on 
how food is raised. Many consumers – 40 percent – want this additional information but if they don’t receive it they 
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are confident that the industry has something to hide (Maslanky and Partners, 2013). In a recent NCBA Beef Issues 
Quarterly publication (March, 2016), it was determined from the Consumer Image Index it was determined that only 
1/3 of consumers claim to have knowledge about how animals are raised for food. This number becomes even more 
diluted when consumers are asked to focus on specific topics (i.e., antibiotics, factory farming, branding, dehorning, 
packing plant processes). Each year more and more consumers are becoming more interested in how animals are 
treated and raised for food production. So the dilemma on industry finds itself in is we are trying to be transparent to 
a group of people that do not have the knowledge base to understand.  

	 MOMS: Women represent the largest market opportunity in the world, according to Forbes magazine. 
Globally, they control $20 trillion in annual consumer spending power. In the next five years, it is expected that 
this number will rise to nearly $30 trillion. In the United States, women have enormous control, and it’s increasing. 
Reports range from $5-15 trillion, with Marketing Zeus citing sources that $7 trillion is contributed by women in the 
U.S. in consumer and business spending. Fleishman Hillard Inc. estimates that women will control two-thirds of the 
consumer wealth in the U.S. over the next 10 years. Women handle the bulk of purchasing decisions for everyday 
items like groceries and clothing — even for those items targeted at men. In fact, 50 percent of products marketed to 
men are actually purchased by women. That’s why items for men are often marketed with women in mind, as well. In 
addition to being responsible for most of the day-to-day purchases, women are also heading up or influential in large 
ticket purchases like cars, homes and appliances. Women account for 85 percent of all consumer purchases including 
everything from autos to health care: 91% of New Homes, 66% of personal computers, 92% Vacations, 80% Healthcare, 
65% New Cars, 89% Bank Accounts, 93% Food and 58% of Total Online Spending. A new generation of moms is rattling 
the baby care category. Here is some interesting information in that 83 percent of new moms are Millennials, making 
this generation the new target demographic purchasing all aspects of baby care. It has been established that selling to 
Millennials poses new, unique challenges not seen by generations past. Millennials are even more adamant about their 
unwaveringly high standards and need for instant gratification when shopping for their babies.

	 MARBLING: Although livestock producers have felt the pressures of economic change for considerably 
longer, the 2009 collapse in the U.S. housing market and following recession directly affected consumers and their 
meat purchasing habits. Even as late as 2013, among consumers who changed their meat purchases, 91 percent were 
spending less (FMI and AMI, 2014). Despite the recession, demand for high quality beef has continually risen and had 
obvious effects on the quality of the already low feeder cattle supply. Today, as a result of genetic tool implementation 
use as well as more affordable feed grains, the beef industry has seen a 12 percentage-point increase in carcass 
grading USDA Prime and Choice since 1995 (Dykstra, 2014). Currently a tremendous demand exists for high quality, 
storied beef programs at Performance Food Group. You can have all of the transparency in the world but the product 
has to check the box for consistent cooked beef flavor and tenderness. 

Discussion
	 In a recent report (Deloitte, 2015) entitled, "Capitalizing on the Shifting Consumer Food Value Equation” 
underlined how widespread health and wellness and other "evolving value drivers" have become in influencing food 
sales in the U.S. The year-long study from Deloitte, Food Marketing Institute and Grocery Manufacturers Association 
included a survey of 5,000 prescreened American adults, fielded to more than 11,000. Survey data were weighed to 
represent U.S. food purchasers, based on U.S. Census data (age, gender, household income). Food purchasers were 
defined as adults 18 to 80 who are primary food/beverage shoppers for their households and eat dinner at home at 
least three times per week. Overall, 51% of those surveyed indicated that they weigh factors including health and 
wellness, safety, social impact, experience and transparency more heavily than the "traditional" value perception 
drivers of taste, price and convenience in their buying decisions. The other 49% said they give more weight to the 
traditional drivers. The shift toward the evolving drivers was "pervasive across region, age and income," meaning that 
"each and every consumer targeted by food manufacturers and retailers has changed in a fundamental way," stress the 
researchers. "It's not just Millennials or the most affluent putting these evolving drivers in the mix," summed up Jack 
Ringquist, principal, Deloitte Consulting LLP and global consumer products leader. Further, "preferences are becoming 
even more fragmented than the food industry may have anticipated," he said. 

	 The survey also found a shift in how Americans define food safety. Nearly three-quarters (74%) said that a 
definition limited to foods or beverages not causing any "immediate, physical, harm" is insufficient. Instead, their 
definitions now include factors such as "free from harmful ingredients" (62%), clear and accurate labeling (51%), and 
"fewer ingredients, processing and nothing artificial" (42%). Consumers who place more value on the evolving drivers 
appear to be more likely to use social media, mobile apps and digital sources to research products and brands on the path 
to purchase. They're also more prone to distrust the food industry than those who put more stress on traditional drivers. 
Regarding food safety, companies need to ensure that they are satisfying consumers' broadened definition. Regarding 
"social impact" factors like food sourcing, sustainability, animal welfare, and fair treatment of employees, they are advised 
to "identify which issues have most opportunity or represent the greatest risk, and when to lead versus follow." 
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	 Consumers define the "experience" driver as including factors beyond the actual products offered, such as 
retail store layout and services, channel innovation, brand interaction, and personalized engagement spanning pre-
, during and post-purchase. The survey found "transparency" to be an "overarching" evolving driver. Consumers 
define it as including clear labeling, certification by trusted third parties, and company attributes such as access and 
trust. Food companies and retailers should provide access to all relevant information, and "be prepared for two-way 
engagement to promote trust," sums up the report. 

Figure 1. The Consumer Value Driver Plate (Deloitte, 2015)
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Genetics of Meat Science:  What traits can we improve genetically that affect 
the value/sensory desirability of beef?

Keith E. Belk, Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University

As a young undergraduate Animal Science student working towards completion of a first animal breeding 
course (a long time ago), I recall the formula that, although perhaps oversimplified, helped students to understand 
how the genome related to phenotypic expression (please forgive inaccuracies of a Meat Scientist!):

Phenotype=Genotype+Envirnonment

Since that time, of course, computing power has improved exponentially and we became more quantitatively 
familiar with features of heritability, complementarity, hybrid vigor, pleiotropy, etc., which conspire to complicate 
basic Mendelian inheritance principles in complex organisms.  We also now know that many events (often not 
yet explainable) during gene transcription, translation and protein synthesis/activity also contribute to the 
‘final’ phenotypic expressions of genes in a given environment.  My question then and now was/is:  what is this 
‘environmental’ component of the equation and how does it affect genomic expression?  It now is more important 
than ever for scientists in biology and genetics to work hand-in-hand in a systems-based approach to help explain 
phenotypic expression.

Today, thanks in part to the Human Genome Project (1990-2003), we have more sophisticated and extensive 
tools to help us understand the previously un-understandable (is that a word?); one being Next Generation 
Sequencing (NGS).  To elaborate on the power of this newer tool, and to put the advances that we have witnessed into 
perspective, let’s for a moment consider this over-a-decade-long project.  To sequence the first human genome using 
Sanger techniques, it took >13 years and approximately $3 billion, and the human genome is about 3.2 billion base 
pairs of DNA in length (NIH, 2010).  In recent shotgun metagenomics studies conducted in our lab, our first sample 
took 7 days to sequence (Noyes et al., 2016; including extraction and library preparation), cost $900, and we generated 
>8 billion base pairs of DNA from that sample.  So, we have witnessed incredible advancement in technology!  Given 
access to, and declining costs of, using NGS to address modern questions, we may now actually have in our grasp the 
ability to explain the true phenotypic response of cattle given a bovine genome and a specific environment—but it still 
won’t be a simple task.

As an example of why I believe that we must use NGS, coupled with a shift in Animal Science thinking, I will 
reference selection for beef eating quality, and particularly marbling scores.  In discussion of this, it is important to note 
that—as scientists—we actually care about marbling scores per se only in the context that they are somewhat correlated 
to tenderness, flavor and juiciness of beef following processing and cooking (Tatum, 2016; the exception may be that we 
are also interested in marbling from a diet-health perspective); collectively referred to as ‘eating satisfaction.’  Marbling 
also is clearly important because it is used to some extent in value discovery.  However, to be clear, marbling can only 
be partially associated with beef demand; the actual economic traits of primary relevance are tenderness, flavor, and 
juiciness.  So, when attempting to improve marbling scores, one can say (in very simple terms) that we are attempting to 
predict (i.e., select for) a predictor of the attributes of actual value.  When we select for ultrasonic or other measures of 
marbling scores, we are selecting for a predictor of a predictor of the traits of economic relevance.  Hence, as geneticists, 
if you desire accuracy and true genetic improvement, you have two options:  you can either select directly for the trait 
of interest (i.e., tenderness, flavor and/or juiciness), or you can do a more-perfect job of selecting for the predictive 
attribute(s) (i.e., marbling scores or, perhaps, ultrasound marbling scores).

How have we performed, as an industry, in taking the route of selecting for predictors of the economically 
relevant trait of importance?  Consider USDA Quality Grade consists in 1974 through 2011 (last National Beef Quality 
Audit; NBQA-2011).  Although there have been some changes to the USDA grade standards during that period of 
time, none really had a significant effect on the location of the lines which determine whether a carcass is graded 
U.S. Choice or not—and, if anything, grade lines are more liberal today than in 1974.  Yet, the percentage of carcasses 
grading U.S. Choice in 1974 was 74%, while the percentage grading U.S. Choice in the last NBQA-2011 was 61%--and 
this value was up from 55% in 1991 when the first NBQA was conducted (Fig. 1).  The cattle that did not meet strategic 
target-consist values for U.S. Quality Grades in NBQA-2011 accounted for 58% of lost opportunities (i.e., lost value 
per head slaughtered) to the U.S. cattle industry.  Lastly, the percentage of the slaughter consist that was comprised 
of predominately black-hided cattle increased from 45.1% to 61.1% between 2000 and 2011—presumably to improve 
marbling scores and branding opportunities (NBQA-2011, 2012), but only marginally contributing to population-based 
improved U.S. Quality Grades.  Considering the amount of investment in research and genetic selection inputs that 
were targeted towards improved ability of carcasses to grade U.S. Choice since 1974, data suggesting that we have not 
substantially improved U.S. Quality Grade consists are rather alarming!
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Fig. 1.  USDA-AMS and National Beef Quality Audit-2011 U.S. Prime/Choice Consist by Year.

Given data associated with U.S. Quality Grade consists, is it even possible to make genetic progress in 
real-world phenotypic expression of, at least what we believe to be, important traits?  The answer appears to be:  
absolutely!  It seems that the industry responds quickly to price signals, but perhaps not strictly to beef demand 
signals.  Take, for example, U.S. Yield Grade characteristics (Fig. 2) and weight; Yield Grades have improved while 
carcass weight has continued to increase at a substantial pace (mean carcass weight in NBQA-2011 was 818; it is much 
higher now).

When it comes to improving consumer demand for beef, is it perhaps time to begin to genetically select for 
the true traits of importance—those that affect purchasing decisions at retail (and, more importantly, re-purchasing 
decisions at retail)?  This is a difficult assignment because the phenotypic outcome of importance in such a scenario 
is expensive and complicated to measure in the real world.  Nonetheless, as we move forward, and if genetic selection 
is to have meaningful impacts on beef demand across breeds, it would seem that genetic selection directly for traits 
that affect demand will be important.

Given all of the modern EPD and genetic selection technology aimed at improved carcass U.S. Quality Grades, 
why have we not succeeded at improving U.S. Quality Grade consists?  We know that selection for this trait must 
occur in the face of a faulty price discovery mechanism that does not adequately provide incentive for improved 
eating quality (marbling).  But, is it also possible that—despite our best efforts—use of the genetic tools have been 
ineffective because we select for the wrong traits, the h2 is moderate at best, or that other factors play a greater role 
in determining phenotypic expression of marbling and eating satisfaction beyond the bovine genome alone?  Could it 
be that the expression of the bovine genome is moderated or influenced by the expression of the microbiota genome?

 
 

 
Fig. 2.  National Beef Quality Audit-2011 U.S. Yield Grade 4’s and 5’s by Year.

My point is that an opportunity exists to estimate and select for phenotypic responses utilizing both the 
genetics of the animal AND the genetics of the microbiota—which may contribute a significant proportion to the 
equation factor of my youth that we call ‘environment’!  Such efforts at understanding the associations between 
human microbiota and genomic expression already have been underway in the Human Microbiome Project for 
some years (Foxman and Rosenthal, 2013), and it is time for us to start thinking about this more seriously in Animal 
Science.  As stated by McFall-Ngai et al. (2013), “all biologists will be challenged to broaden their appreciation of these 
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interactions and to include investigations of the relationships between and among bacteria and their animal partners 
as we seek a better understanding of the natural world.”  Given that such relationships appear to truly exist and 
that they influence humans (Fig. 3), is it not reasonable to also believe that these interrelationships would influence 
expression of traits like marbling score, feed efficiency, U.S. Yield Grade, etc., in cattle?

 

 
Fig. 3. Relationships among, and communication between, animals and their microbiome (from McFall-Ngai et al., 2013).

Recently, in a 16S rRNA-based analysis of 1,126 pairs of human twins, Goodrich et al. (2016) concluded that “A 
candidate gene approach uncovered associations between heritable taxa and genes related to diet, metabolism, and 
olfaction” and that “diet-sensing, metabolism, and immune defense are important drivers of human-microbiome co-
evolution.”  In other words, the microbiota among twins was linked to the genetics of the twins, and those microbiota 
and phenotypes tended to develop together.  So, it firstly is possible and even likely that the microbiome of cattle is at 
least partially dependent on cattle genetics and that the development of the cattle and the microbiota are associated 
with one another!  But, in addition to this, a review by Soucy et al. (2015) suggested that there exists both a “core” 
and “pan” genome that are involved in phenotypic expression (Fig. 4), and that these genomes can each contribute 
to expression via horizontal gene transfer mechanisms—at least in plants (Fig. 5).  So, is it also possible that similar 
sharing of genes occurs between livestock and their microbiota via horizontal transfer mechanisms?

It is time to begin the task of understanding relationships among, and the impacts of, microbiota of cattle 
on economically relevant traits and traits that ultimately influence consumer demand for beef at retail; things like 
tenderness, flavor, and juiciness.  But also many additional traits.

 
 

Fig. 4.  “Core” (genes found in all members of a group of interest) and “pan” (the 
core genome plus the accessory genome—genes that are present in only one or a 
few members of the group) genomes.  The concept of a pan-genome has led to the 
idea that steps in metabolic pathways may be distributed over several individuals 
within a community (from Soucy et al., 2015)
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As the industry moves forward, and as beef demand (both domestic and global) becomes an increasingly 
important topic for sustainability of the industry in light of high production costs and subsequently high costs 
to consumers at retail (retail purchases of beef have declined by 39.3% since 1985), then a number of traits of 
interest emerge for consideration in genetic selection and animal husbandry.  And, there also is the proposed Grand 
Challenge that we will need to feed, with an 80% likelihood, 9.6 to 12.3 billion people by the year 2100—albeit with 
all foods.  These impending needs will likely need to be considered in relation to the microbiota of the cattle-raising 
and beef processing environment.  The following are all of importance from a cattle industry economic viability, 
animal and public health, and food security perspective:  (1) outlier cattle that are discounted, (2) carcass and offal 
condemnations, (3) effects of growth promotion (perhaps growth promotion technologies are not necessary when 
growth traits are selected for in conjunction with the microbiome!), (4) beef oxidative stability, color and display life, 
(5) immune response and animal diseases—particularly those that are zoonotic, (6) nutrient composition and density, 
(7) fatty acid composition, (8) transmission of foodborne pathogens, and (9) transmission of antimicrobial resistance.

 

 
Fig. 5. Horizontal gene transfer has resulted in unique capabilities in plants (from Soucy et al., 2015).
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Session Moderator
Matt Spangler grew up on a 
diversified crop and livestock farm 
in Kansas. He received degrees 
from K-State (BS; 2001), Iowa State 
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program emphasis is on increasing 
profitability and/or reducing cost 

of production through improved forage utilization, 
defining optimal management practices and 
evaluating beef production systems.

Kenneth (Chip) Ramsay was born 
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cattle operation in central Indiana. 
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in beef cattle management from 
Ricks College, a bachelor’s degree in 
business finance from Brigham Young 
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management from 
Texas A&M.
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for Deseret Ranches in Florida and Oklahoma from 
1991 to 2006. He is currently general manager of 
Deseret Ranches’ Nebraska operation known as 
Rex Ranch.

Clay Mathis was named director 
and endowed chair of the King Ranch® 
Institute for Ranch Management 
in July 2010. As director, Mathis 
leads faculty and staff appointed to 
the King Ranch Institute for Ranch 
Management and oversees teaching 
and outreach efforts of the Institute.

He maintains and develops 
curriculum for the master’s in ranch 
management degree program, which includes more 
than 42 hours of business and animal production 
coursework and intensive project work tackling 
issues on large partnering ranches across the U.S.

Mathis works closely with the KRIRM Management 
Council to identify topics and speakers for the entire 
suite of KRIRM lectureships and the annual Holt Cat 
Symposium on Excellence in Ranch Management.

A native of New Braunfels, Texas, he received a 
bachelor’s degree in animal science and master’s in the 
physiology of reproduction from Texas A&M University.

In 1998, he earned a doctorate from K-State in 
ruminant nutrition where his research focused on 
supplementing grazing cattle. From 1998 to 2010, 
Mathis worked as a professor and extension livestock 
specialist at New Mexico State University.
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Kent Andersen was raised on a 
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operation in central Nebraska. 
Following graduation from the 
University of Nebraska (B.S., 1985) 
and Colorado State University (M.S., 
1987 and Ph.D., 1990), Andersen 
served as director of education and 
research (1990 to 1999) and executive 
vice president (2000 to 2009) for the 
North American Limousin Foundation.

During his career, he has been active in various 
beef industry organizations, including the Beef 
Improvement Federation, the National Pedigreed 
Livestock Council, and the U.S. Beef Breeds Council.

In his position with Zoetis, Andersen serves as 
director of genetics for cattle and equine technical 
services. Andersen is active in his family’s commercial 
cow-calf and farming operation in Nebraska.
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The 2016 and the 2036 cowherd, what we do and what we need to do better. 

David Lalman, Damona Doye, Megan Rolf, Mike Brown, Miles Redden, Adam McGee, Corbit  
Bayliff, and Courtney Spencer 

Oklahoma State University and Kansas State University 

	

Introduction 

Tools and benchmarking data are readily available to monitor changes over time in post-
weaning performance, finishing phase profitability and carcass characteristics.  For example, in 
most breeds the genetic trend for yearling weight and marbling EPD continues to steadily increase 
over time (Kuhn and Thallman, 2015). Finished cattle weights and carcass weights are increasing 
at the rate of about 9.4 and 5.7 lb per year since 2007 (LMIC, 2016).  Likewise, percent of federally 
inspected cattle grading USDA Choice and above has increased from 48% in 1995 to 78% for the 
2015 calendar year (LMIC, 2016). 

In contrast, documenting production and financial performance of the commercial cow/calf 
sector continues to be a challenge.  Programs designed to simultaneously evaluate economic and 
animal performance are necessary because production outcomes are influenced by the production 
environment and management.  In other words, one can increase production by accelerating input 
costs resulting in a higher per unit cost of production.  Consequently, cost per unit of land or per 
unit of production ($/cwt of calf produced, for example) are better indicators of ranch 
efficiency…at least through the weaning phase.  Obviously, this picture is complicated further if 
calves are retained through a post-weaning phase and especially considering dramatic differences 
in carcass value.  Benchmarking data in the commercial cow/calf industry is scarce. Numerous 
commercially available programs are available to record and evaluate cow/calf enterprise 
production records (Lalman et al., 2015), although few of these provide the capability to 
benchmark against other similar enterprises.  Fewer programs with the capability to simultaneously 
evaluate economic and performance outcomes are available.  For the purpose of evaluating the 
current “state” of the commercial cow/calf sector and identifying areas of low hanging fruit 
through the next 20 years, we reviewed production and economic performance of commercial 
cow/calf enterprises over time.  This data was provided by the Kansas Farm Management 
Association (Herbel, 2016), Southwest Cow-Calf SPA (Bevers, 2016), Cow Herd Appraisal 
Performance (CHAPS) program (Ringwall, 2016), and FINBIN, Center for Farm Financial 
Management (University of Minnesota, 2016).     

Cost of Production 

 Figures 1 and 2 show the annual cost per cow in the SPA and KFMA data sets, respectively.  
Using simple linear regression to evaluate the trend over time, the cost to maintain beef cows has 
increased at the rate of $22.45 per year in the southern Great Plains (Texas, Oklahoma and New 
Mexico) as determined using the SPA methodology.  In the KFMA system, annual cow cost 
escalation has averaged $34.35 per year since 1994.  Methodology may differ between these 
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programs, therefore, the costs should not be compared directly, but both clearly document 
increasing annual cost of production. 
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Figure 2. KFMA (Kansas) total cost and feed cost (pasture and non-pasture) per 
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Feed Cost Total Cost Linear  (Total Cost)

y = 22.25x + 263

$0.00 

$200.00 

$400.00 

$600.00 

$800.00 

$1,000.00 

$1,200.00 

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

C
os

t p
er

 C
ow

Figure 1. SPA (Texas, Oklahoma and New Mexico) total cost per cow.
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Using the SPA data, cost per cwt of calf produced has accelerated at the rate of $5.00 per 
year.  During the same time period, calf prices have accelerated at an average rate of $5.25 per 
cwt per year (Figure 3).  These data suggest that the relationship between the cost of production 
and the value of weaned calves has not changed much when viewed from a general “trend over 
time” perspective.    

Pendell et al. (2015) reported characteristics influencing profitability and cost in 79 Kansas 
cow/calf enterprises participating in the program between 2010 and 2014.  Even though average 
cow/calf enterprise profitability has not changed much over the last 20 years, the variation in 
profitability from year to year remains lower than the variation in profitability among operations 
within any given year.  In other words, in “bad” years, some cow/calf operations remain profitable 
and some continue to be unprofitable in “good” years.  Cattle producers have little influence on 
macroeconomic factors driving year-to-year differences in industry-wide profitability.  However, 
this data confirms older reports suggesting that management decisions and production systems, 
which are within the producers’ influence or control, can have a dramatic impact on profitability.   

In Pendell et al. (2015), the 79 operations were divided into high, medium and low 
profitability groups.  The high profitability 1/3 ranches averaged $415.03 more net return per cow 
than the low 1/3 profitability group.  When comparing the characteristics driving differences in 
profitability between the high 1/3 and the low 1/3 groups, they found that 67.8% of this difference 
was due to lower cost of production in the high profit group.  The remaining 32.2% difference in 
profitability was due to differences in gross income per cow.   As one would expect, higher 
profitability herds had slightly higher average weaning rate, weaning weight and calf sale price.  
However, controlling cost was substantially more important in driving profitability than was 
increasing pounds of cattle sold (calves and cull cows) or price for cattle sold.  

In this same study, the Kansas group reported results from multiple regression analyses 
designed to explore factors explaining variation in profitability among these 79 operations.  In the 
profit model, neither calf weight nor calf price were significant factors.  However, in the cost 
($/cow) model, increased calf sale weight (weaning weight) was highly significant.  In fact, for 
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every one-pound increase in calf weight, total cost per cow increased by $0.86.  Considering the 
weaning rate during this time period in these operations averaged about 90%, the cost to increase 
one pound of weaning weight was about $0.96.   

To quantify the value of additional weaning weight, we evaluated 234 weekly sales reports 
from the Oklahoma National Stockyards in Oklahoma City (Livestock Marketing Information 
Center) from 2010 through 2014.  The mean value of added weight in the 550 lb to 650 lb weight 
range was $85.90 with a standard deviation of $33.20.  On average, the cost associated with 
increasing weaning weight in the Kansas data was slightly greater than the value of increased 
weaning weight.  The relative value of additional weaning weight is highly variable over time, and 
therefore, the profitability of managing to achieve greater weaning weight will be highly variable 
over time. 

Clearly, in a “sell at weaning” enterprise context, there is more low hanging fruit in cutting 
or managing cost than there is in increasing production.  Fortunately, selection indexes as well as 
relatively new EPD’s more directly related to profitability, input costs and fertility are becoming 
available.  Over the next 20 years, these tools should help curb the appetite for traits that result in 
increased cow costs such as increased mature cow weight, milk yield, and extremes in growth 
(Lalman, 2013).        

Reproductive Efficiency 

Genetic trend data (Kuehn and Thallman, 2015) indicates that tremendous changes have 
occurred in the seedstock sector over time in conjunction with continued proliferation and 
refinement of genetic selection tools. However, tools to assist in improving the genetics of fertility 
or reproductive efficiency, which are low in heritability, have been scarce and relatively recent in 
terms of implementation (heifer pregnancy EPD’s for example).  Perhaps it is no surprise that 
advancing such a difficult trait has been a challenge in the commercial cow/calf segment.  Weaning 
percent, also described as weaning rate or percent calf crop weaned, is the calculation used to 
evaluate overall reproductive efficiency according to Beef Improvement Federation (BIF) 
guidelines (BIF, 2010).  This calculation includes losses due to cows failing to become pregnant, 
pregnancy losses, calf death loss prior to weaning and cow death loss.  Mean herd average weaning 
percent is shown for each of the last 24 years in figure 4 for commercial cow/calf operations 
contributing to KFMA (Kansas), SPA (Texas, Oklahoma and New Mexico), CHAPS (North 
Dakota) and FINBIN (upper Midwest) programs. The Kansas data represents percent of calves 
weaned from number of pregnant cows.  Consequently, weaning rate in this data set would be a 
few percentage units lower than those reported in figure 4 (due to open cows and early embryonic 
losses not being included in the calculation). 
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                                                     . 

 

Overall reproductive efficiency has not changed significantly throughout this time period 
in these four datasets.  For the ten-year period from 2005 through 2014, weaning rate has averaged 
90.7, 88.7, 88.0 and 83.2 for North Dakota, Kansas, upper Midwest and the southern states of 
Oklahoma, Texas and New Mexico, respectively.  True weaning rate in the Kansas data would be 
lower than 88.7, although how much lower is unknown.  This data suggests a substantial 
reproductive efficiency gradient declining from the northern to the southern Great Plains region of 
the United States.   

This discrepancy in fertility and (or) calf survival has been consistent over time.  Many 
factors may contribute to reduced weaning rate in the South including heat stress, parasite burden, 
lower forage quality, an increase in proportion of non-adapted cattle (dark hide and hair color in 
particular), and reduced utilization of Bos indicus cattle in planned crossbreeding systems …to 
name a few.  In general, it appears that room for economically beneficial improvement in overall 
fertility in the northern Great Plains is limited.  On the other hand, there seems to be an opportunity 
for a major breakthrough in reproductive efficiency in the southern U.S.  Obviously, the potential 
to improve fertility through maternal heterosis, planned crossbreeding systems, and use of 
composite populations have been known for a long time. In particular, it would seem that the 
southern cow/calf region as a whole should reconsider the rapid evolution away from use of 
planned crossbreeding systems or composite systems utilizing Bos indicus breeds and other 
regionally adapted cattle.    

Consider a quote from Dr. Ron Randel, Texas A&M University in a recent conversation, 
“F1 females, out of Hereford bulls and Brahman cows, gives you North Dakota-like fertility in the 
Gulf-Coast region.  You have a well-adapted, low-maintenance female that can take the heat, the 
parasites, and nutritional stress during tough drought years or in cases of marginal management.  
If you mate those females to an Angus bull with growth, feed efficiency, marbling and muscle, 
you have an animal that can compete in today’s feeding industry and perform well in a grid 
marketing program.”  Obviously, there are challenges associated with creating and maintaining an 
F1 cow herd.  These challenges along with market discounts for feeder cattle and carcasses have 
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Figure 4. SPA, KFMA, CHAPS weaning rate over time
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contributed a great deal to the decline in use of similar breeding systems.  The same breed structure 
and crosses will not work in every region and each producer should choose a planned 
crossbreeding system that would work for their management and marketing goals.  However, the 
use of planned crossbreeding or composite populations to create maternal heterosis and regional 
adaptability, paired with traditional selection on fertility-related EPDs, has the potential to 
dramatically increase reproductive performance in the southern U.S.   

A significant proportion of the number of cows failing to wean a calf are due to failure to 
become pregnant and embryonic mortality (loss of pregnancy).  Just recently, the American 
Hereford Association initiated the use of the Sustained Cow Fertility EPD (Northcutt and 
Bowman, 2015) designed to address these fertility components in genetic selection.  Hopefully, 
whole-herd reporting will continue to expand across the seedstock sector allowing further 
development and implementation of similar tools directly related to reproductive efficiency.  

Production at Weaning 

 Average weaning weights over time from the four benchmarking programs, along with 
Angus weaning weights for bull calves are shown in figure 5.  Angus data is shown as an example 
of phenotypic changes over time in the seedstock sector.  It should be recognized that the three 
commercial data sets represent actual weaning weights for both steers and heifers. Adjusted 
weights are not available in the SPA, KFMA or FINBIN programs.  Logically, one primary factor 
that could lead to these results (no increase in actual weaning weight) would be a wide-spread 
evolution to earlier age at weaning in commercial operations.  In other words, we are assuming 
that age at weaning has not changed substantially during this time period.  The Angus data in the 
graph represents adjusted weights for bulls only.  Consequently, the relative differences in weaning 
weights are not comparable.  Rather, our objective is to observe change over time in large datasets 
that have used consistent guidelines in collecting and reporting weaning weight data.     

Simple linear regression was applied to each dataset independently.  The regression 
coefficient for the SPA (P = 0.65), CHAPS (P = 0.80) and FINBIN (P = 0.74) data did not differ 
from zero, indicating that, on average, there has been no change in weaning weight for herds 
participating in these programs during this time period.  The regression coefficient for the KFMA 
data was positive and significantly different from zero (P = 0.016) suggesting that, on average, 
weaning weight in these herds have increased at the rate of about 1.1 lb per year since 1995.  There 
is a highly significant (P < 0.01) positive linear coefficient in the Angus dataset, indicating that 
adjusted weaning weights have increased at a rate of about 2.6 lb per year. Although the Angus 
heifer data is not shown in Figure 5, a similar positive, linear coefficient (P < 0.01) was observed 
at the rate of 2.1 lb per year.  

Based on the limited data available, we submit that commercial cow/calf and seedstock 
phenotypic changes in weaning weight may be uncoupled.  Either the producers in these datasets 
are not selecting for increased weaning weight or lower nutrient availability and (or) less intense 
management restrict the expression of genetic potential for weaning weight growth in commercial 
operations.  Genetic improvement would be expected to lag in the commercial segment by several 
years.  Regardless of the reason, commercial operators should be asking the question, “Does 
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continued aggressive selection for growth improve my bottom line?”  Certainly, potential 
antagonisms of continued aggressive selection for growth should be considered (increased appetite 
and maintenance requirements in retained females, for example).  

 

Summary 

 Long-term trends in cost of production appear to be keeping pace with increased calf prices 
while there has been no substantial change in productivity of the nation’s commercial cow herd 
over the past 24 years when viewed from a “sell at weaning” enterprise context.  In contrast, 
changes in post-weaning growth, carcass weight and marbling has been dramatic.  This is both 
good and bad news. While overall cow/calf segment year-to-year profitability has not changed 
substantially, well-managed operations remain profitable even during financially difficult years.  
At the same time, some cow/calf enterprises continue to lose money in relatively “good” years.  
While increased calf prices, weaning weight and reproduction are features of profitable cow/calf 
enterprises, controlling or minimizing cost of production is more important.  On average, minimal 
improvement in weaning weight and no improvement in reproductive efficiency has been achieved 
in the nation’s commercial cow herd over the 24-year time period evaluated.  This is surprising 
because genotypic and phenotypic trends indicate substantial positive change in breed association 
data.  Although certainly not new or revolutionary, a shift towards more emphasis on minimizing 
production cost in the cow/calf enterprise is appropriate.  This shift should not come at the expense 
of industry gains made in post-weaning characteristics over the past 20 years.  The toolkit to 
convey the costs (antagonists) associated with increasing growth, milk yield and carcass weight 
genetics has expanded in recent years.  This trend in development of genetic selection tools is vital 
to assist the commercial cow/calf sector in balancing genetic selection for controlling production 
cost versus increasing post-weaning phase performance, post-weaning phase profitability and 
carcass value.  
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In Search of Beef Production Nirvana
Things a cow-calf producer learns when you own a feedyard: what drives profit?

Chip Ramsay, Rex Ranch

Executive Summary
The increasing volatility of market price and weather patterns are two major challenges that pose serious 

threats to profitability in our “betting on the come” segmented management systems. We hope to counteract some of 
that risk through further integration in the beef industry which can increase opportunity to add value and efficiency to 
the whole system thus increasing long term profitability. Added value can be recognized through increased revenues 
generated from producing a more targeted, consistent product and then marketing that product to those who desire it 
most. Added efficiency can be realized through the cost-side of the profitability equation. As trust between segments 
increase, unneeded redundancies will be discarded. A greater understanding of how each segment affects the system 
as a whole will cause inputs to be used in an increasingly additive fashion rather than the traditional “I am going to get 
mine” approach. Beef production’s competitive advantage over swine and poultry is our ability to turn roughage into 
protein. Thus, the profitability measure in an integrated system should become more focused on a “return per acre” as 
opposed to “return per cow”, which should intensify our focus on optimizing the use of the whole system’s capacity. 

Although the challenges facing this industry are not for the faint of heart, we can adapt and prosper. The 
speed of our progress will be highly correlated to the cohesiveness of our approach as opposed to trying to do 
it all within our own little segmented operational vacuums. Ranchers, feedyards, packers, retailers, researchers, 
associations and allied partners taking the time to develop the pertinent questions and coordinating their approach 
so as to not waste intellectual and financial resources on stuff that has little effect on sustainable profitability will be 
key to our future success.

What we have learned since owning a feedyard:
The organization that I work for is in beef production because we want to own agricultural land. Owning 

good land is a wholesome food producing investment that can feed people in a time of need which also can provide 
a hedge against inflation. Consequently, some of that land is best suited for beef production. So when talking about 
profitability, we are much more concerned with a sustainable return per acre rather than return per cow. Thus, owning 
a feedyard and/or entering into an agreement with a packer to develop a branded product are further attempts to 
return more dollars to the original land investment. We also hope the closer we get to the consumer dollar the more 
we will lessen the price volatility of our final product. Within that framework, the following observations are provided 
to encourage thought more than to provide absolute answers. 

1.  Market price for our calves or our fed cattle has more influence on our profitability than anything else we do. 
Unfortunately, our company doesn’t have a system that can accurately forecast what our calves are going 
to be worth or whether those calves will make money in the feedyard or not (P < .000001). In fact, market 
variability has been quite pronounced over the last few years as shown in Table 1 and Table 2. Table 1 shows 
the actual prices and Table 2 defines the year on year variation. Table 2 shows that from 2012 to 2016, calf 
prices have changed up or down from the previous year by an average of 20% or $241 per head. That is all 
fine and good when it is going up, as it did in 2013 and 2014. However, coming down may present some real 
problems if you haven’t been thrifty with previous profits and are not willing to adapt. Consequently, Table 2 
also shows the volatility appears to be slightly less on fed cattle over that same period. 
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2.  Weather extremes can also wreak havoc on profitability by rapidly increasing the cost of production. We 
cannot predict the weather so as to plan optimum stocking rate; we can only react to it. Table 3 shows the 
effects of the extreme drought of 2012-2013 which nearly doubled our cost of production on the Rex Ranch. 
Fortunately, the increase in the 2014 market price baled us out of what could have been a severe loss on the 
2013 calf crop.

3.  A feedyard when used as a hotel to rent space makes a nice return on investment as long as you keep 
occupancy up. However, the profitability of owning the cattle is extremely volatile. Since 2010 feeding 
returns have ranged from $600 to ($600) per head when viewing the feedyard as an isolated segment. When 
viewing the system as a whole (ranch and feedyard together) during the last few years, the $600 losses were 
more than compensated for by the cow/calf profitability on the ranch.

4.  We learned quite a bit from 1995 to 2010 custom feeding our calves in multiple feedyards and harvesting 
the cattle at multiple packing plants. However, since feeding our cattle in one yard for the past six years and 
harvesting at only two plants, we feel we are learning at a much faster pace than before.  

5.  We are learning how to feed cattle differently from different parts of the country. 
	 o  Florida calves fed a higher roughage ration than previously for first 60 days in the feedyard caused 

dry matter intake to increase from 1.6% to 1.9% of body weight and decreased founders from 7% to 0%. 
Whereas, the western calves never really exhibited an intake problem or founder problem to begin with.

6.  We are adjusting how we implant cattle based on genetic make-up 
	 o  Holstein calves from our dairy in Utah require a less aggressive implant protocol than we originally 

assumed. The less aggressive protocol decreased dry matter feed conversion (DM lbs. per lb. of gain) from 
6.7 to 6.2, increased ADG (lbs. per head per day) from 2.8 to 3.1 and increased hot carcass yield from 58.5% 
to 61.5%.

7.  Animal handling/disposition plays a role in feedlot performance. For years, Rex Ranch has focused on 
animal handling technique because our grazing philosophy requires that we move often and we choose not 
to increase labor (one man moving 850 pair every 3 to 4 days). We have also culled the poor attitudes (I am 
only talking about the cattle; fortunately, they have allowed me to stay on.). Consequently, the Rex cattle’ 
disposition is noticeably different in eyes of the feedyard cowboys and they appear to have a slight edge 
on feedyard performance in terms of dry matter feed conversion (DMC) and average daily gain (ADG) when 
compared to cattle of similar genetics from our other ranches. In addition, another one of our operations 
has made an intensive effort to decrease hotshot use. The resulting difference in the way the cattle handled 
and came up on feed was noticed immediately at the feedyard. We fully expect the differences of cattle 
disposition between ranches to dissipate as we focus on improving our animal handling skills company 
wide.
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8.  You can improve genetics within a genetic interval using EPDs and it will translate into added feedyard 
performance and profitability.

	
	 o  	 Prior to 1999, we were still using ratios to select our bulls on our Florida operation. Finally, in the year 

2000, all the hard work and foresight over the prior years of data collection culminated in us being able to 
run EPDs on our ranch raised bulls. As you can imagine, those EPDs had very low accuracies but we used 
the EPDs and a disposition score to cull the bottom third of our bull battery. We had been custom feeding 
our calves for the last 5 years so we had a pretty good idea of what they were. The next two calf crops from 
the improved bull battery showed significant improvement in feedyard performance. Calf fed ADG improved 
from 2.6 to 2.9 and DMC improved from 6.7 to 6.2. This added performance jump has been retained and 
improved upon to this day through the consistent use of EPDs.

	 o  	 In the early to mid1990’s calves raised on the Rex Ranch were sold and fed to repeat buyers and those 
buyers reported that they graded 70 to 80% choice. Prior to 2007, the Rex Ranch was using ratios to select 
their bulls off test. In addition, the ranch raised bulls with the highest ratios were collected and used along 
with a few proven AI sires to expose the seedstock cows for the next bull crop. Since marbling wasn’t seen 
as a problem, selection focus for several years had been on creating the best cow for the environment that 
produced a calf that grew well post weaning. Consequently, pregnancy rate and weaning percentage both 
improved from 92% to 94% and ranch cost of production held steady. However, quality grade by early 2006 
had decreased by 40% and dystocia rate on our 1st calf heifers was around 25%. In 2007, we made bull 
and seedstock cow selections based on our first in-herd EPD run and we used only high accuracy industry 
proven AI sires on the seedstock cows. Using EPDs, we intensified our focus on improving marbling and 
calving ease and tried not to give up too much growth or ruin the cow in the process. In 2015, our dystocia 
rate on our 1st calf heifers that had been exposed to our ranch raised bulls had decreased from 25% to 
8%. Our feedyard performance had held steady while quality grade had risen back to 80% choice or better. 
ADG and DMC on comparable sets of cattle across years has held steady or improved. 1737 head of open 
yearling heifers placed in the yard in September 2015 at 761 lbs. closed out in January and February of 2016 
with 841 lb. hot carcass weight, 3.76 lb. ADG, 6.23 DMC, 87% choice or higher, 44% Y1&Y2s and 10.4% Y4s. 
Clearly, progress can be made if we use the technology and tools available to us in a sound fashion.

9.  The nutritional environment absolutely matters from conception to carcass. 
	 o  	 Two of the ranches in our system that experienced serious drought conditions had drastically 

different feedyard performance from the calves weaned during the drought. However, both ranches had 
similar conception rates during the drought so you couldn’t see the nutritional effects in cow condition. 
Table 4 shows the differences in feedyard performance.

10.  For better or worse, owning a feedyard has narrowed our focus and decreased our marketing options 
allowing us to spend more time on improving operational efficiency. The following points indicate some of 
the changes that have occurred.

	
	 o  	 Our marketing options have been greatly simplified. We no longer sell calves or yearlings just fed 

cattle on a carcass basis. This change greatly simplifies the revenue equation.
	 o  If it doesn’t make logistical sense on the ranch to ship the cattle from a set of scales, we can just add back 

the historical shrink to the off truck weight at the feedyard for the ranch’s data.

	 o	 In the dead of winter with extreme weather, we no longer worry about an early morning gather for 
weigh up purposes. Instead, we gather the cattle later to make sure they have watered and eaten to lessen 
the stress of the haul and arrival.
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	 o	 Since our cattle are sold on a carcass weight basis, we have foregone the weighing of our fat cattle 
prior to hauling them to the plant to decrease stress, labor and dark cutters.

	
	 o	 We are streamlining our processing protocols so as to not unnecessarily repeat vaccinations.

	 o	 We have quit sorting off and haggling on the value of what appears to be lower quality cattle. What few 
head of cattle that are lighter weight, off color, rat tails, long ears, humps, etc… ship together and feed right 
along with the others of their same weight class.

	 o	 It is exciting to see our people in the field moving beyond being cowboys to becoming beef producers.

11.  “In Search of Beef Production Nirvana” what kind of title is that? Wikipedia defines Nirvana in the following 
ways (I am partial to the Hindu philosophy):

	 o	 In the Buddhist tradition, nirvana is described as the extinguishing of the fires that cause suffering 
and rebirth.[29] These fires are typically identified as the fires of attachment (raga), aversion (dvesha) and 
ignorance (moha or avidya).

	 o	 In Hindu philosophy, it is the union with Brahman, the divine ground of existence, and the experience 
of blissful egolessness.[8]

	

The overall question for our industry should be: In our quest to achieve Beef Production Nirvana, what is the 
most efficient, cost effective way to provide a constant flow of quality beef to various targeted markets? Individually, 
each of us need to ask: What role do I play in adding value to that system, how can I improve and how do I get 
compensated properly for my contribution?
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Growing Profit by Understanding Cow Maintenance Efficiency and 
Maintenance Requirement in an Animal and Systems Context

R. Mark Enns, Ph.D., Professor, Colorado State University
Scott E. Speidel, Ph.D., Assistant Professor, Colorado State University

Introduction and Background
A statistic often used to illustrate the importance of cow maintenance requirements is that the feed associated 

with maintaining the cow herd accounts for roughly 60% to75% of the total feed used in the cow calf herd and in 
some cases for overall beef production—a range that is well supported by scientific literature (Ferrell and Jenkins, 
1984; Gregory, 1972; Heitschmidt et al., 1996; BIF, 1981).  Given the magnitude of the costs associated with cow herd 
maintenance, cow feed intake is clearly an economically relevant trait—a trait directly related to the costs and 
therefore profit of beef production.  In addition to its economic importance, differences in maintenance requirements 
have been shown to be heritable (h2 = 0.52; Hotovy et al., 1991), which allows reduced maintenance requirements 
to be a clear target for selection and genetic improvement.  Yet, the availability of these selection tools for genetic 
improvement of cow maintenance requirements is limited due to the expense associated with measuring maintenance 
requirements directly.  Even with this difficulty, there are tools currently available that aid in the selection for 
improved maintenance requirements. 

Tools for Selection	
Cow energy needs can be divided up into four general categories: energy for gestation of the calf, growth, 

lactation, and maintenance (e.g. locomotion, temperature regulation, protein turnover, etc).  Literature evidence also 
suggests the latter 2 items (lactation and maintenance) are not completely independent (Jenkins and Ferrell, 1983; 
Ferrell and Jenkins, 1984).  Currently available expected progeny differences (EPD) useful for genetic improvement of 
maintenance requirements are largely comprised of those categories.  These EPD focus on “maintenance energy” and 
make the assumption that a relationship between lactation and maintenance requirements exists. 

	
The EPD related to maintenance energy requirements are based primarily on mature cow weight, height and 

body condition score, leveraging data on traits easily recorded and reported by breeders.  Given the relationship 
between lactation requirements and maintenance energy, milk EPD are also often used as a piece of the maintenance 
energy puzzle.  In most cases, EPD for mature weight and height are available to use in selection with increases in 
mature weight indicating greater maintenance requirements.  In some instances information on mature weight and 
the resulting mature weight EPD are combined with the milk EPD to produce the $EN (American Angus Association, 
2016) and the maintenance energy EPD (e.g. Red Angus Association of America, 2016).  However, one of the challenges 
associated with the calculation of these EPD is the relative low reporting rate for mature weight and body condition 
score observations.  Often the number of mature weight observations may represent only 2 to 5% of the number of 
weaning weights stored in breed association databases. Admittedly, weaning weight numbers include observations 
on both male and female calves, yet given the opportunity to leverage repeated mature weight and BCS measures on 
cows, increased reporting rates would greatly enhance the accuracy of these evaluations.

	
One of the other challenges associated with genetic evaluation of ME is the time required for observations to 

be collected and the amount of time needed for EPD accuracy increases to be realized.  The most useful data for the 
evaluation of ME comes from 2 year old and older cows, although in some instances weaning and yearling weights 
are used in multiple trait analyses as a correlated trait to provide some indication of mature size at an earlier age.  An 
alternative to “waiting” for mature cow observations would be the development of genomic markers predictive of 
maintenance requirements.  Markers associated with maintenance requirements could be used to increase accuracy of 
selection at younger ages and to identify maintenance energy requirement differences not expressed through mature 
weight alone.  These markers would provide information earlier in an animal’s life span, but given the current state 
of knowledge, they would not eliminate the need to weigh and body condition score females.  Research is underway 
to identify DNA and protein markers predicative of differences in maintenance energy requirements such as reported 
by Cooper-Prado et al. (2014) and as indicated in the USDA-NIFA funded National Program for Genetic Improvement of 
Feed Efficiency in Beef Cattle (see: http://www.beefefficiency.org/). 

Interpretation and Use
The EPD for improvement of maintenance energy requirements must be used in the context of the beef 

production system and never independent of that context or as the focus of single trait selection.  With that 
perspective, EPD representing maintenance energy would be much like birth weight.  Continued downward 
selection pressure on birth weight would ultimately result in calves with lowered survival rates.  As with many traits 
maintenance energy likely has an intermediate optimum, where too low or too high is not a preferred outcome and is 
liable to result in reduced profitability.
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Interpretation of mature weight and mature height is relatively straightforward with units in pounds (kg) 
or inches (cm) depending upon location (e.g. American Hereford Association and American Angus Association).  
However interpretation of maintenance energy EPD can be less straightforward with the particular breed deciding on 
the appropriate unit for interpretation.  For instance, the Red Angus Association of America has chosen to express 
that EPD (I.e. ME EPD) in terms of Mcal/month where animals with lower EPD produce progeny requiring less feed 
input for maintenance than animals with higher EPD.  This EPD combines knowledge of mature cow metabolic 
weight (thru the EPD for that trait) with knowledge of the milk production level of the cow as indicated by her milk 
EPD using an approach similar to that reported by MacNeil and Mott (2000), with increases in milk EPD resulting 
in increases in overall maintenance requirements.  In the end, mature size accounts for approximately 91% of the 
variability in maintenance energy requirement while milk production level accounts for roughly 9%.  The differences 
represent expected differences in the metabolizable energy requirements of daughters at a body condition score of 5.  
Translating the ME EPD into an amount of a specific feed source requires knowledge of the net energy of that feedstuff.  
However, no matter the feed source, animal ranking will not change for both ME EPD and predicted differences 
in metabolizable energy requirements.  The American Angus Association has taken a slightly different approach, 
combining knowledge of genetic differences in mature weight and milk production with the economics of production 
into a dollar value, $EN.  Representing the “an expected dollar savings difference in future daughters of sires” (http://
www.angus.org/Nce/ValueIndexes.aspx) with larger values associated with larger savings in feed costs.

	
In the end, selection for maintenance requirements is undertaken with the goal of increasing profitability.  

The American Angus Association has taken the next step.  Generally, maintenance energy is related to overall body 
size with heavier cattle having greater maintenance requirements.  The challenge for cattle breeders is to balance 
lowering feed costs/input with the increased salvage value of larger cull cows.  This balance is typically accounted 
for in the development of maternal-focused indexes where the value of changes in maintenance energy requirements 
is balanced with the increased income associated with larger cows and greater salvage value.  Application of this 
knowledge in the public domain is limited with Melton (1995) and a few others reporting specific values for selection 
for improved efficiency or maintenance energy requirements.  As adoption of economic selection indexes and the 
genetic and economic research increases, valuing differences in maintenance energy requirements will become more 
straightforward and likely use more precise genetic predictors than only mature weight alone.
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Introduction 
The future of the beef industry is encouraging. Recent years have yielded exceptional prices that have 

allowed unprecedented profits, especially for the cow-calf sector of the beef supply chain. At the same time, great 
advancements in production and genetic technologies have improved the production potential of cow-calf enterprises. 
The future holds expectations for continued global population growth and rising demand for protein. As a result, the 
beef industry’s outlook for the next 20 years is bullish. The biology of beef production will not change, but there are 
numerous external factors to which cow-calf producers must adapt to remain profitable. In general, the challenges 
ahead are not new. A growing population with evolving social norms and interests in agriculture, increasing costs of 
production, labor challenges, and an uncontrollable pattern of precipitation would have topped the list of concerns 
for beef producers 20 years ago, and still do today.

This paper will take an over-the-shoulder look back in time to identify important changes and challenges 
the beef industry has dealt with over the past twenty years. Recent history will be used to illuminate factors of 
importance for the cow-calf sector in the future. Even though the prevalence and magnitude of external factors 
affecting the beef industry will remain largely unpredictable, there are enough trends to speculate where cow-calf 
managers should focus their efforts to maintain or improve efficiency and profitability through 2036. 

Looking Back
Financial. Revenues and expenses have changed greatly over the past few decades.  According to CattleFax 

(Troy Applehans, personal communication), weekly 550-pound calf price from 1988 to 1995 averaged $90/cwt, and 
increased to $165/cwt from 2008 to 2015 – an 88% increase. However, when adjusted for inflation the difference is 
only 18%. The influence of the cattle cycle does marginalize the value of prices between any two points in time, but 
considering that each value is an 8-year average, the influence of the cycle is lessened. Surely calf prices of 2014 and 
2015 were exceptional, such that even without an improvement in performance, commercial cow-calf enterprises have 
been highly profitable. 

The revenue portion of the profit equation is primarily a function of weaning rate and weights, calf price, 
and cull cow value, whereas the expense component is much more complicated. Figure 1 shows that over half of the 
expenses for a cow-calf enterprise can be categorized as depreciation, labor, or feed. Other expenses like repairs and 
maintenance, fertilizer, fuel, leases, and veterinary services are important when taken together, but independently are 
less important. In general, business expenses are influenced by broader economic factors like minimum wage, and the 
costs of energy, grains, and land. These external factors have also changed over time, and in some cases the change 
was dramatic. Figure 2 illustrates the relative change in corn, oil, land value, and minimum wage over the past 20 
years. Each of these is important because they strongly influence major cost categories in a cow-calf enterprise. Table 
1 shows the actual average prices for the same commodities and costs. The magnitude of inflation adjusted increase in 
oil and land values is remarkable, 284% and 134%, respectively. So remarkable that the more moderate increases of 9% 
for labor and 24% for feed appears less significant. However, when considering the proportional contribution of feed 
and labor to the total cow calf budget these smaller increases may be equally impactful.

Performance. Since the mid 1990s, the beef industry has embraced technology like never before. The 
seedstock sector has led the charge to develop improved data-driven tools for genetic selection. For example, 
residual feed intake as a measure of efficiency is now relatively common, and genomically-enhanced expected 
progeny differences (EPD) are available to the industry. Use of genetic tools for selection has yielded measurable 
gains in performance, particularly in the easily quantified growth traits. The average reported 205-day adjusted 
weaning weight of bulls and heifers entered in the American Angus Association in 1995 and 2015 are 581 and 638 
pounds, respectively, indicating a 2.9-pound average annual increase. Data from the American-International Charolais 
Association shows a 31-pound increase in adjusted weaning weight over the same time period. It is safe to assume 
that the same upward trend in weaning weight is also evident in most other major breed associations. There are 
many other traits that must be considered to quantify overall genetic improvement, but in general, performance 
advancement has occurred in the seedstock sector.

On the other hand, translation of seedstock improvement to the commercial cow-calf operation performance 
is not as apparent. Availability of information documenting performance changes within the cow-calf sector over the 
past two decades is limited; however, Standardized Performance Analysis (SPA) data does shed some light. Table 
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2 shows Southwest SPA summary production date from 1993-1995 compared to 2013-2015 for ranches in Texas, 
Oklahoma, and New Mexico. Interestingly, during this time period when seedstock weaning weights were increasing, 
no change was evident among the commercial operations in the SPA dataset. In fact, there was essentially no change 
in reproductive performance or pounds of calf weaned per cow exposed. Table 3 demonstrates that this is also true 
in the northern plains region. Given the resources and climate, it is not surprising performance is higher on average 
among North Dakota cow-calf operations than those in the southwest, but it is interesting that over the past 20 years 
in these separate regions productivity per cow has not increased in parallel with clear growth trait advancement in 
the seedstock sector.

Why has there not been phenotypic change in the commercial cow-calf sector paralleling the seedstock 
increase in weaning weight? Why has reproductive performance also not improved? These are two very important 
questions to ponder. It may be that genetic potential for production of the seedstock sector has simply advanced 
beyond what the environment/resources will allow in these regions. It is possible that the SPA summaries from the 
southwest and northern plains simply show optimization, and that resources are dictating an upper limit to cost-
effective performance. 

 
Looking Forward to 2036

Understanding the changes that have occurred over the past 20 years provides context for identifying 
where producers should focus their efforts to ensure profitability in the future. The historic data should be viewed 
holistically in that future efficiencies and profits will not be mutually exclusive efforts to controlling costs and 
increasing revenues. Instead, success will come from optimizing expenses and performance by building a production 
system that will yield the lowest unit cost of production for the most valuable calf that can be produced in the 
operational environment. Excellent genetics exist, and there is opportunity to better utilize advanced genetics across 
most of the commercial cowherd in the U.S; however, there is greater opportunity for improving efficiency and profit 
for most operations through management.

Financial. Consider the price data in figure 1 and table 2. If the same trend in prices and inflation over the past 
20 years continue for the next 20 years, then prices of oil, corn, ag land, and minimum wage in today’s dollars would 
approximate $307/barrel, $5.77/bushel, $6,786/acre, and $7.90/hour, respectively, in 2036. It is difficult to speculate 
these trends over 20 years, and seems likely that this extrapolation over-estimates oil, and underestimates corn and 
especially labor. However, these values are still concerning. Producers should ask themselves if their current cow-calf 
production system can remain financially successful in such a volatile price environment. Using the same approach to 
extrapolate the 18% inflation adjusted increased calf prices from the past 20 years equates today’s $175/cwt calf price 
to $206/cwt in 2036. Global population growth will increase food demand and beef price; however, the same influence 
will elevate the cost of grains and energy. The most successful cow-calf operations in 2036 will employ production 
systems that minimize labor, purchased feed and depreciation costs to realize the lowest unit cost of production 
possible.

Independent of the cost of production, calves and cull cows of the most profitable 2036 cowherds will be 
aggressively marketed. In an effort to gain the highest possible price for the most valuable calves that the efficient 
production system will allow, successful managers must capitalize on market seasonality when marketing calves and 
culls, and capture premiums through branded programs that are compatible with the production system.

Performance. The demonstrated lack of performance change in the commercial cow-calf sector over the past 
20 years causes one to question how managers should focus their effort in achieving or exceeding animal performance 
targets in the future. It is likely that for most operations some improvement in both genetics and management will be 
necessary, but even where good genetics are present such potential will not be realized to the fullest without great 
management. There is opportunity to improve pregnancy rate and weaning rate, but the marginal cost of higher 
performance may be prohibitive. In operations that are already well-managed, performance improvement will come 
in very small increments. However, among operations below 90% pregnancy rate, there may be an opportunity to gain 
another 5%. The marginal cost for weaning a calf crop greater than 85 to 90% is likely not warranted. This is especially 
true in extensive range conditions or harsh subtropical environments where a practical upper limit to pregnancy 
percentage may fall below 90%. In these same environments current genetic potential for milk production and 
preweaning growth can exceed the resource’s ability to support such potential. Managers in these environments must 
use caution in genetic selection and pursuit of increased animal performance.

Performance gains may be made through long-term selection or strategic inputs to yield small improvements, 
but managers of the 2036 cowherd should seek high leverage change for greatest impact. The best managed 
operations do these things already and utilize strategic inputs well. Nevertheless, across the U.S. cowherd there is 
still opportunity for commodity beef producers to better utilize technologies like calfhood growth-promoting implants 
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that increase gain and efficiency at a low cost, and properly timed and administered vaccines and anthelmintics that 
improve health and minimize performance losses. 

The greatest opportunity and leverage to cost-effective performance improvement may exist at the production 
system level. Many of the best managed cow-calf operations in the U.S. do a very good job of capitalizing on hybrid 
vigor, but unfortunately too many continue to overlook this opportunity. Crossbreeding is a management decision that 
is high leverage because by improving fertility, calf age at weaning, calf weaning weight and cow longevity is enhanced. 
Greater cow longevity decreases the percentage of replacements needed annually and increases the proportion of 
forage consumed by producing cows. Ultimately, this can have a big effect on the efficiency of production. This is 
not a new concept, but somehow crossbreeding remains underutilized. The most efficient and profitable commercial 
cow-calf operations of 2036 will maximize the benefits of heterosis by being predominately crossbred, and they will 
utilize terminal sires to the fullest potential within the constraints of meeting replacement female needs. These same 
characteristics exist today among the most profitable commercial cow-calf operations.

Focusing Efforts for the Biggest Impact
Neither currently nor in the future will producers individually be able to control commodity prices, the 

price of grazing land, or the compensation rate of adequately skilled labor. Also outside of producer control are the 
biological limitations to cow performance in any given environment. As world population grows, demand for food 
and energy will increase as well, elevating both revenues and expenses to the cow-calf operation. Considering the 
proportional changes in calf prices and expense category indicators over the past 20 years, cow-calf producers 
should prepare for these trends to be somewhat similar in the future. In order to make the cowherd more efficient and 
profitable by 2036, producers should focus on high leverage interventions at the production system level. There is no 
silver bullet to success, but cow-calf producers interested in making improvement will adapt their production system 
with a focus on optimizing labor, purchased feed, and depreciation in a way that minimizes unit cost of production. 
Successful operations will employ proven technology with a positive return on investment, diligently market calves 
and cull cows to their highest value, and manage price risk effectively. Producers should focus on maintaining 
or improving genetics of the cowherd with reasonable expectations for improved performance and a careful 
consideration for the marginal value of performance change. Central to the decisions for optimizing performance of 
the cowherd should be an effort to maintain a high level of heterosis. 

The overarching philosophy of management in the future will be of paramount importance to success in the 
years ahead. The interconnectedness of a cow-calf enterprise to other agriculture and nonagricultural enterprises and 
activities on farms and ranches will be inescapable. As production systems are adapted to the changing business and 
social pressures in the years ahead, focus on the habitat, wildlife, and societal views on production methods will be 
warranted.
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RNA interference:  
Will the overlooked nucleic acid be the new star among animal health technologies? 

Barry J. Bradford and Caroline M. Ylioja, Kansas State University 

 

Introduction 

 The “central dogma” of modern biology, since its adoption in the mid-20th century, has 
been the basis for our understanding of how genetics impacts animal phenotypes. However, 
discoveries in the past 20 years have greatly complicated this simple storyline. Among these new 
discoveries, RNA interference is exciting not only because it allows us to more fully understand 
the inheritance of complex traits, but also because it is allowing for the development of an entirely 
new class of pharmaceuticals. 

What is RNA interference? 

 In genetics, it is common to think of DNA as containing sequences that encode for proteins 
(genes) and a bunch of other DNA that is unimportant.  This thinking is based on the central dogma 
of biology, which states that DNA serves as a template for RNA production, and RNA serves as a 
template for protein production, ultimately driving the form and function of the organism. 
Unfortunately, this elegantly simple paradigm has been muddied by the discovery of a number of 
very important non-coding RNA species. Scientists working with the roundworm in the early 
1990s discovered short segments of RNA that did not code for protein at all (Lee et al., 1993). 
Instead, these segments (now called microRNA) could align with a longer RNA strand containing 
a complementary sequence, and cause it to be degraded, blocking protein production (Figure 1). 
This biological phenomenon was later verified to occur in many other species, including plants, 
animals, and humans. 

Scientists began to realize the importance of this mechanism in normal development and 
function, partly because of the sheer number of genes that are regulated in this manner.  The 
number of potential target genes varies between species, but recent estimates are that about 50% 
of human genes can be regulated by microRNA.  

Further groundbreaking work, resulting in a Nobel Prize in 2006, was the discovery that 
introduction of synthesized double-stranded RNA into the cell could mimic the naturally occurring 
process, bind to RNA of a specific gene, and prevent protein production (Fire et al., 1998).  Not 
only has this provided scientists with a superior research technique to determine the function of 
specific genes, but this technology also has exciting potential to be developed as a tool to treat 
disease or affect physiological function.   

  

36



 

Figure 1. Mechanism underlying gene silencing by microRNA-mediated RNA interference.  
MicroRNA encoded by the genome is often found in introns that are excised from messenger RNA after 
transcription. The excised microRNA typically forms a hairpin loop that triggers post-transcriptional 
processing. The resulting short interfering RNA strand is complementary to a portion of a messenger RNA 
sequence, or often to several mRNA targets. The formation of double-stranded RNA causes the activation 
of an enzyme complex known at the RNA-induced silencing complex that degrades the mRNA. As a result, 
the protein encoded by the mRNA is not produced, resulting in a change in cellular function. 

Micro RNA and inherited traits 

 One intriguing aspect of this new knowledge around RNA interference is the idea that 
introns (the non-protein coding “junk” DNA found within the coding sequences for proteins) may 
actually be the key genetic element underlying some selected traits. A single nucleotide 
polymorphism at a critical place within a microRNA sequence could, in theory, impact many 
proteins by creating or eliminating regulatory suppression by the microRNA through improved or 
impaired complementarity (Li et al., 2011; Li et al., 2015).  

 Epigenetics, though not the primary focus of this paper, has also turned traditional genetics 
on its head. The premise of this field of study is that environmental factors (i.e. diet, social 
interactions, physical activity) can lead to changes in animal function that can be passed on to the 
next generation, without an alteration in DNA sequence (Gonzalez-Recio et al., 2015). These 
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changes are typically driven by altered chemical states of DNA that influence its accessibility for 
transcription. Interestingly, microRNA play a key role in regulating epigenetic mechanisms 
(Holoch and Moazed, 2015), and therefore may be involved in inherited traits that are not encoded 
by DNA sequences. Conversely, epigenetic modification of DNA induced by butyrate (an end-
product of ruminal carbohydrate fermentation) lead to alterations in microRNA expression (Li et 
al., 2010), suggesting a bidirectional link between epigenetics and RNA interference. 

RNA interference as a next-generation pharmaceutical tool 

 In the same way that genetically-encoded microRNA can target mRNA sequences for 
destruction, synthetically-produced RNA molecules can be designed to silence proteins in a cell 
with great specificity (Bradford et al., 2016). This offers a number of exciting opportunities for 
addressing big problems in animal agriculture. For example, modern laboratory tools allow for the 
rapid genomic sequencing of new pathogens that can devastate livestock sectors; however, this 
information is currently put to use in a months-long process of creating vaccines. With continued 
developments in RNAi, it should be possible to rapidly (days or weeks) design and deploy small 
RNA molecules targeting the pathogen directly, allowing for a much more rapid counter-attack. 
Also, the active compound in RNAi is simply an RNA molecule (consumed daily by everyone), 
which makes this platform appealing from a food safety / residue perspective. 

 There are significant challenges to address before RNAi-based therapies will be practical 
for use in livestock. One hurdle that must be addressed for in vivo application of RNAi is the 
delivery of RNA molecules into cells of target organs. This is challenging because most cells do 
not normally take up RNA molecules. Secondly, the RNA molecules have to be protected from 
degradation while in transit to the organ of interest, which generally means using a nanoparticle 
with its own set of challenges. Finally, in light of recent survey data suggesting that 80% of 
consumers want mandatory labeling of food that contains DNA (Lusk, 2015), it is likely that 
consumers will initially be apprehensive about agricultural uses of RNAi. 

 Although the use of RNA interference to promote animal health may not come to fruition 
soon, it may be impacting human health already.  The first phase 3 clinical trial utilizing RNAi is 
currently underway, targeting the elimination of a mutant protein that can cause a form of 
amyloidosis (http://clinicaltrials.gov/ct2/show/NCT01960348). More broadly, there is growing 
evidence that animal-source foods may impact human health in part by delivering biologically-
active microRNA (Zempleni et al., 2015). Among the hundreds of microRNA found in cow’s milk, 
one sequence known as miR-29b was shown to increase in circulation follow human consumption 
of the milk, and the downstream targets of this microRNA were altered in blood cells (Baier et al., 
2014). Because miR-29b has been shown to promote the growth of cells that create bone matrix, 
these findings implicate cross-species RNAi as a likely factor in the beneficial effects of milk 
consumption on bone density. It is entirely possible that humans have been affected by diet-derived 
RNAi “nutraceuticals” for millennia! 

Conclusions 

 We are in the very early stages of understanding the role of microRNA in inheritance of 
traits in livestock, and we are also likely decades away from seeing commercial application of 
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RNAi therapeutics. Nevertheless, the growing understanding of this fascinating biological process, 
and its implications across species, has opened up exciting possibilities in both fields. 
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BEEF YIELD GRADING: History, Issues, and Opportunities 

Ty E. Lawrence, Ph.D., Professor of Animal Science, West Texas A&M University, Canyon 

 

Beef grading history 

 The United States beef yield grade arose from industry interest in yield measurement 
beginning in the 1950’s.  The landmark data from which the yield grade is derived was presented 
at the American Society of Animal Production meetings in Chicago in 1960 and consisted of 162 
beef carcasses representative of the period (Murphey et al., 1960).  Those data were used to 
develop a multiple-linear prediction equation using 12th rib fat depth, percentage kidney-pelvic-
heart fat, hot carcass weight and ribeye area to estimate percentage boneless closely trimmed round 
loin rib and chuck (BCTRLRC).  A second equation, the calculated yield grade, was developed as 
a 1 through 5 index using the same four carcass variables to estimate ranges of BCTRLRC.  Yield 
grading began as a one-year trial in July 1962 and was put into effect on June 1, 1965.   

Since the industry began using the yield grade equation, much research (Abraham et al., 
1968; Abraham et al., 1980; Reiling et al., 1992; Farrow et al., 2009) has evaluated the ability of 
the four chosen variables to estimate boneless lean yield.  Subcutaneous fat depth measured at the 
12th rib is most closely related (r = -0.53 to -0.66) to boneless lean yield, followed by percentage 
kidney-pelvic-heart fat (r = -0.18 to -0.58), ribeye area (r = -0.18 to 0.51), and hot carcass weight 
(r = -0.03 to -0.53). 

At inception, the yield grade was either determined from objective measures of 12th rib fat 
depth (using fat ruler) and ribeye area (using dot grid) or subjectively assessed.  By 1978, the GAO 
reported to the U.S. Congress that yield grade needed to be assessed more accurately (Woerner & 
Belk, 2008).  Development of an electrical instrument grading system began in 1980 and through 
several iterations of improvement and validation, instrument grading became a reality in 2007.  No 
industry standard exists concerning subjective human versus objective instrument grading; 
instrument grading use ranges from none to the sole determinant of yield and quality grade.  

Economics of yield grading 

 Value-based sales in which yield grade premiums and discounts may alter the final carcass 
value are an ever-increasing proportion of beef cattle/carcass marketings.  The maximum premium 
offered for a yield grade 1 equals $8/cwt. whereas a yield grade 5 carcass carries up to a $20/cwt. 
discount (USDA 2016a).  When the maximum reported yield grade premium or discount is applied 
to a 900-pound carcass, carcass value is altered by +$72, +$45, -$135, and -$180 for yield grades 
1, 2, 4, and 5, respectively.  Application of the previous values to the annual fed beef population 
indicates the potential industry value for yield grade valuation is +$108 million, +$326 million, -
$309 million, and -$61 million for yield grades 1, 2, 4, and 5, respectively (USDA, 2016a; USDA, 
2016b).    
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Inconsistencies and challenges 

 The era in which the yield grade was developed was dominated by small-framed early 
maturing cattle which were primarily purebred Herefords.  In contrast, the current fed beef 
population is a kaleidoscope of genetic diversity that is medium and large in frame; the greatest 
population of purebred animals is now represented by the Holstein breed.  Moreover, cattle feeding 
technology including growth promoting implants and beta-adrenergic agonists offer cattle feeders 
the opportunity to maximize growth and manipulate composition of gain.  Improvements in genetic 
selection and growth technology have resulted in annual hot carcass weight gains of 5 pounds for 
steers and 6 pounds for heifers.  Continuation of the current trend suggests that mean hot carcass 
weights will reach 1000 pounds in the years 2040 and 2046 for fed steers and heifers, respectively.  
In contrast, the population of cattle from which the yield grade equation was derived ranged from 
350-900 pounds with a mean hot carcass weight of approximately 600 pounds. 

 The relationship between hot carcass weight and rib eye area has been assumed to be linear 
as denoted in the yield grade equation (USDA, 1997) and displayed on a rib eye measurement dot 
grid.  In contrast, we have demonstrated that relationship is quadratic in total, with a linear portion 
that is represented by a lesser rate of longissimus muscle growth than assumed (Lawrence et al., 
2008).  When yield grades derived from the multiple-linear equation are compared to red meat 
yield, 40% of the variation in red meat yield can be accounted for in beef-type carcasses (Lawrence 
et al., 2010).  However, 0% of the variation in red meat yield can be accounted for when the yield 
grade equation is applied to Holstein steers (Lawrence et al., 2010).  The lack of relation is Holstein 
steers is most likely due to limited or disproportional subcutaneous fat deposition as compared to 
other lipid depots combined with a lesser muscle to bone ratio.   

Potential modifications and other systems 

 Camera grading technology has the ability to redefine appropriate linear measures to 
predict red meat yield of beef carcasses.  However, today camera systems continue to use the 
equation generated from 162 carcasses harvested in the 1950’s.  Farrow et al. (2009) demonstrated 
that other variables could be generated to improve predictability of red meat yield.  Although no 
official changes are slated to be made to alter the yield grade equation, this author suspects that 
individual beef processors have gathered and are using such information in-house. 

 In considering how to improve upon the USDA system, it is imperative that we reflect on 
what other nations are doing.  Our Canadian neighbors developed their current beef yield system 
in 1992; that system uses metrics of muscle width (dorsal-ventral distance), muscle length (medial-
lateral distance), and subcutaneous fat depth to predict percentage carcass lean.  Notably, the 
Canadian system does not include hot carcass weight or percentage kidney-pelvic-heart fat.  
Similarly, a system developed to predict yield of Japanese beef carcasses measures subcutaneous 
fat depth, intermuscular fat depth, and rib eye area – albeit at the 6th rib location as well as a cold 
carcass weight specific to the left carcass side.  Beef producers in Europe have still another method 
of lean prediction, a subjective evaluation of carcass muscle conformation combined with a subject 
evaluation of fat deposition. 
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In summary, we continue to use a yield estimation system developed from a small 
population of cattle that no longer exist to predict red meat yield of cuts that are increasing leaner.  
We apply that estimate to carcasses that weigh beyond the inference of which it was designed and 
we have ignored the opportunity to develop new yield estimates afforded by camera grading.  
Leadership within the beef community must decide if the status quo is acceptable, or if 
improvement is warranted.   
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National Program for Genetic Improvement of  
Feed Efficiency in Beef Cattle 

 

Our goal is to sustainably reduce feed resources required to produce beef via the 
rapid development and deployment of novel nutritional, genomic and genetic 
improvement technologies.  

We will strengthen the international competitiveness of US agriculture and enable 
increased food production by increasing the animal protein produced without 
additional feed inputs and with a reduced greenhouse gas footprint. 

What is the project? 

 The project involves a consortium of scientists, industry partners, breed 
associations, and cattle producers who will collect DNA samples and feed intake, 
growth and carcass composition data from over 8,000 animals (8 breeds).  

 Over 2,400 animals will be genotyped to generate across-breed molecular 
expected progeny differences (MEPDs) for feed efficiency, feed intake, growth and 
carcass traits.  

 In addition to creating and validating selection tools for producers, we will also 
be examining the DNA of efficient animals and seeking straightforward methods to 
identify efficient animals without measurement of individual intakes. 

 This project involves developing tools for marker assisted selection (MAS) and 
also for marker assisted management (MAM). MAM is application of specific 
management practices (e.g. diet, days on feed, etc.) based on an animal’s genotype 
so that it reaches a given outcome group (i.e. choice) with the least feed inputs. 

Why is this important? 

A 1% improvement in feed efficiency has the same economic impact as a 3% increase 
in rate of gain. 

The traits that beef producers routinely record are outputs which determine the value 
of product sold and not the inputs defining the cost of beef production. The inability to 
routinely measure feed intake and feed efficiency on large numbers of cattle has 
precluded the efficient application of 
selection despite moderate 
heritabilities (h2 = 0.08-0.46). Feed 
accounts for approximately 65% of 
total beef production costs and 60% 
of the total cost of calf and yearling 
finishing systems. The cow-calf 
segment consumes about 70% of the 
calories; 30% are used by growing 
and finishing systems. 

Table 1 shows the potential cost 
savings to the US beef cattle industry 
that could occur with selection for 
feed intake, feed efficiency, growth, and carcass traits. Calves and yearlings selected 
for residual feed intake (RFI) have the same ADG but eat less feed thus saving feedlot 
operators money. Assuming 27 million cattle are fed per year and that 34% of cattle in 
the feedlot are calves and 66% are yearlings, the beef industry could save over a billion 
dollars annually by reducing daily feed intake by just 2 lb. per animal. 
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Table 1. Estimated cost savings to the US beef cattle industry from selection for a 2 
lb reduction in residual feed intake. 

 
 
In 
Wt. 

 
 

Out  
Wt. 

 
 

Lb.  
Gain 

 
 
 

ADG 

 
Days 

on 
Feed 

 
 
 

RFI 

Reduced 
Feed 

Intake 
(lb) 

Feed  
Cost  

Savings 
$/hd 

%  
of  

Fed 
Mix 

Total 
Feed  
Cost  

Savings 
Calf Feds 

600 1250 650 3.5 186 0.0 0    
600 1250 650 3.5 186 -2.0 -372 (54.72) 34 $ 502,620,656 

Yearling Feds 
775 1300 525 4.0 131 0.0 0    

775 1300 525 4.0 131 -2.0 -262 (38.67) 66 $ 689,539,820 

Total Savings:  $ 1,192,160,476 
Annual fed slaughter cattle:  27 million head; Delivered feed cost:  $ 294.62 as fed 

Weaber, 2011 

How will this benefit me? 

You will have genetic selection tools and techniques (MEPDs) that will allow you to 
create a cow herd that is more efficient at converting nutrients to calf gain. 
Additionally, the steers and heifers you send to a feedlot will use less feed to 
produce the same amount of high quality protein for human consumption. 

Will this really work? 

 MEPDs have been successfully employed for output traits (i.e. growth and 
carcass) on a within-breed basis in beef cattle. Results from the dairy industry have 
shown tremendous advantages, particularly in evaluating young sires, through the 
use of MEPDs.  

 A large demonstration project that aims to illustrate the efficacy of tools 
developed from this project includes a group of approximately 20 seedstock 
producers from seven states representing the seven major U.S. beef breeds along 
with a large commercial ranch. Producer owned sires will be used to generate 
crossbred progeny that will have growth, feed intake and carcass data collected.  
These steer progeny and their sires will be genotyped.   

 The demonstration component enables a validation of discovery work from 
the project and a visible demonstration utilizing academic and industry resources 
working towards a common goal, the development and employment of genomic 
tools to improve feed efficiency.   

 Producer collaborators will provide DNA samples on females within their 
herds to examine the relationship between female fertility/longevity and feed 
efficiency. Inclusion of fertility/longevity traits in the project enables selection 
decisions to be made with a more complete understanding of potential genetic 
antagonisms across a suite of economically important beef production traits. 

How can I keep up to date? 

 Go to: www.beefefficiency.org 

 Watch for episodes on NCBA’s Cattlemen to Cattlemen television show. 

 Attend meetings or presentations by members of the research team. 

Producer Resources 
 
Website 
www.beefefficiency.org 
 
Broadcast Media 
NCBA’s Cattlemen to Cattlemen 
 
Multimedia Presentations 
Webinars 
 
2-day Conferences 
Research updates 
Feed efficiency component traits 
Strategies for genomic selection 
Commercial herd sire selection 
Feedlot marker-assisted 

management (MAM) 
 
Youth Leadership 
Conferences 
 
Educational materials 
PowerpointTM presentations 
eXtension materials 
 
Software 
Decision support software for 
sire selection and evaluation of 
economics of implementing MAM 
 
Field demonstration 
projects 
 

 
 
 
This project is supported by 
Agriculture and Food Research 
Initiative Competitive Grant no. 
2011-68004-30214 from USDA 
National Institute of Food and 
Agriculture. 
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Gene set enrichment analysis for feed efficiency in beef cattle 
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Kerley3, D.W. Shike5, J.E. Beever5, US Feed Efficiency Consortium3, K.A. Johnson1 

1Washington State University, Pullman 
2Texas A&M University, College Station 

3University of Missouri, Columbia 
4Iowa State University, Ames 

5University of Illinois, Urbana 
Abstract 

 Selection for improved feed efficiency in cattle would decrease the amount of feed 
consumed for the same or greater levels of production resulting in enhanced profitability and 
sustainability. Selection for feed efficient cattle has been hampered by a lack of phenotypic data 
on feed intake and weights from cattle in production due to the cost and difficulty in collecting 
these data. The aim of this study was to better understand the molecular functions and biological 
processes associated with residual feed intake (RFI) by identifying gene sets (biological 
pathways) associated with RFI in Hereford cattle and to use this information to facilitate 
genomic selection for RFI. Feed intake and body weight were measured on 847 Herefords at 
Olsen Ranches in Harrisburg, NE. Animals were genotyped with the Illumina BovineSNP50 or 
BovineHD Bead Chips. Genome-wide association analysis was conducted with GRAMMAR 
mixed model software as part of the gene set enrichment analysis (GSEA). Single nucleotide 
polymorphisms were mapped to 19,723 genes based on the UMD 3.1 reference genome 
assembly based on coordinates within 8.5 kb either side of each gene. Gene sets (4,389) were 
compiled from Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Reactome, Biocarta and Panther for the GSEA. Gene sets associated (Normalized Enrichment 
Score > 3.0) with RFI after 10,000 permutations in GenABEL were centrosome (5) 
(GO:0005813), cytoskeleton organization (4) and peroxisome (KEGG:04146). Most (191) of the 
identified genes enriched within the gene set for RFI (leading edge genes) were unique to a 
single gene set although 15 leading edge genes were shared between centrosome (5) and 
cytoskeleton organization (4) and one gene was shared between cytoskeleton organization and 
peroxisome gene sets. Further GSEA are being conducted with Angus, Angus x Simmental and 
crossbred beef cattle to validate these results. 

Introduction 

 Great strides have been made in improving cattle traits that are easily measured and 
associated with performance or output measures such as weaning and yearling weights. These 
traits also determine the value of beef products that are sold. Less improvement has been made in 
traits that are more difficult and costly to measure that are associated with inputs or cost of 
production. The expense and difficulty in measuring these traits has hampered improvement 
even though the majority of the costs associated with raising cattle reside in feed (Anderson et al. 
2005). Residual feed intake (RFI) is often used as a measure of feed efficiency in beef cattle 
because it is phenotypically independent of growth and body weight (Koch et al., 1963). 
Residual feed intake is defined as the difference between the amount of feed actually consumed 
and the expected feed requirement based on body size and production level of the animal over 
the period feed consumption was measured. Cattle with low RFI are efficient animals that 
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consume less feed than expected for their level of performance. An advantage of using RFI as a 
measure of feed efficiency is that it is not correlated with the traits that are included in its 
calculation, unlike some other measures such as feed conversion ratio, that may have unintended 
selection consequences such as large mature cow size (Archer et al., 1999). The failure to 
measure RFI and use it as an evaluation tool to improve feed efficiency in cattle has largely been 
due to the cost and difficulty in measuring feed intake.  

 In the past decade, genomic resources for identifying regions of the genome associated 
with economically important traits have become available that have accelerated genetic 
improvement in cattle. As the genetics community has enjoyed these new genomic tools, the 
impediment to greater genetic improvement has become the collection of cattle phenotypes. The 
ability to economically collect a full set of phenotypes on cattle lags behind our ability to analyze 
genomes. This has been particularly true in collecting phenotypes on traits that occur late in life, 
are expensive or require specialized equipment. Traits such as these are therefore typically not 
used for routine calculation of estimated progeny differences (EPD), or if used are associated 
with low EPD accuracies due to the limited number of phenotypes collected on the breeding 
stock as well as their progeny. 

 The genotype-phenotype relationship for feed efficiency in cattle is complicated by stage 
of life, diet, breed, weather and a host of other factors. The use of phenotype-focused approaches 
to study the genetic basis of feed efficiency may be very helpful in identifying and validating loci 
that explain a large fraction of genetic variance. The National Program for Genetic Improvement 
of Feed Efficiency in Beef Cattle has collected RFI data on over 8,000 cattle in several cattle 
breeds (Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, Wagyu and crossbreds of 
Charolais x Angus, Piedmontese x Angus x Simmental, Simmental x Angus) to identify 
quantitative trait loci associated with RFI. To compensate for the lack of RFI phenotypic data on 
the majority of cattle in the US, the use of genetic markers predictive of RFI could be used to 
select animals for improved feed efficiency. 

 Just as breeds of cattle differ in their abilities to use dietary energy, so do individuals 
within breeds differ in their ability to convert forages or concentrates into usable energy to grow, 
maintain their body condition, successfully maintain a pregnancy or raise a calf. Some of the 
differences in feed intake that are not explained by differences in weight or growth rate are the 
result of genetic variation (Carstens and Tedeschi, 2006; Herd and Bishop 2000, Basarab et al., 
2003). The reported heritability for RFI is moderate (18-49%) suggesting that there is an 
opportunity to make significant genetic gains in feed efficiency through selection (Bolormaa et 
al., 2011; Saatchi et al., 2014). There is evidence that measurement of RFI in cattle post-
weaning, in mature cows, or across different feeding regimes is repeatable (Herd et al., 2003; 
Durunna et al., 2011). The consistency of RFI over time and across feedstuffs suggests that it 
may be a good measure to include in selection indexes for multiple-trait selection of cattle that 
are feed efficient and productive.  It would also be an excellent candidate trait for marker-
assisted or genomic selection. 

 To identify markers for marker-assisted or genomic selection, genome-wide association 
studies have been conducted to identify genomic regions with major effects on RFI (Barendse et 
al., 2007; Sherman et al., 2008; Bolormaa et al., 2011; Mujibi et al., 2011; Rolf et al., 2012; 
Serão et al., 2013; Abo-Ismail et al., 2014; Saatchi et al., 2014). A complementary approach to 
identify markers for selection is to identify genes that are differentially expressed between cattle 
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with high and low RFI (Chen et al., 2011; Al-Husseini et al., 2015; Paradis et al., 2015; Tizioto 
et al., 2015; Xi et al. 2015, Weber et al., 2016). The identification of genes that are differentially 
expressed would potentially identify genes with large or modest effects on variation in RFI. 
Genetic markers or single nucleotide polymorphisms (SNPs) within or near these genes could be 
used for selection.  

 The use of gene expression data can also be integrated into a third approach; the use of 
pathway, network or gene set enrichment analysis (GSEA).  Pathway, network or GSEA aim to 
provide insights into genes that individually may have more modest individual effects but may 
be interacting with one another to cumulatively elicit a large effect on phenotype. The study of 
pathways or gene networks allows us to better understand the molecular functions and biological 
processes that are associated with a trait such as RFI. As GSEA has matured, it has used 
associations with SNPs within or near genes to substitute for gene expression data to identify 
gene pathways important to a trait. More recent enhancements have combined both SNP and 
differentially expressed gene data together to identify important gene pathways. Gene set 
enrichment analysis has previously been conducted with RFI for five breed groups consisting of 
Angus, ¾ Angus, crossbred Angus and Simmental and purebred Simmental (Serão et al., 2013). 
Nine clusters of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were associated (p < 0.001, enrichment score > 3.0) with feed efficiency. Those 
pathways included GO molecular functions of nucleotide binding, protein kinase activity and 
metallopeptidase activity, and GO biological process of ion transport, phosphorus metabolic 
process, membrane invagination and proteolysis. The KEGG gene set associated with RFI was 
the MAPK signaling pathway (Serão et al., 2013). The glycogen synthase kinase 3 beta (GSK3B) 
gene was the leading edge gene in the KEGG gene set and is involved as a regulator of nutrient 
storage in adipose tissue and skeletal muscle (Hoehn et al., 2004). Abo-Ismail and colleagues 
(2014) identified 35 biological process gene sets that were associated with RFI. Of these gene 
sets, ion transport and cation transport contained the largest number of leading edge genes 
although proteolysis, protein complex biogenesis and protein amino acid glycosylation were also 
identified. Ion transport, MAPK signaling, and proteolysis were gene sets that had also been 
identified by Serão et al. (2013) as associated with RFI in beef cattle. Pathway or network 
analysis can also be performed using other approaches as has been described by Rolf et al. 
(2012), Saatchi et al. (2014), and Weber et al. (2016). Several pathways (adherens junction, 
adipocytokine signaling, apoptosis, long-term depression, calcium signaling, melanogenesis, 
pancreatic cancer, pathways in cancer and MAPK signaling) were identified in more than one 
pathway and/or GSEA study as being important in RFI (Rolf et al., 2012; Abo-Ismail et al., 
2014; Xi et al., 2015). Although, the specific pathways differed, Weber et al. (2016) identified 
pathways associated with RFI that are involved in the activation of the immune response and in 
the down regulation of fat deposition in adipose and muscle tissue in eight steers produced from 
one high and one low RFI Angus bull.  

 The aim of this study was to identify genes and gene sets that were associated with RFI to 
better understand the molecular functions and biological processes that are associated with RFI 
and to exploit this information through genomic selection to improve the efficiency of beef cattle 
production. 
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Materials and Methods 

 Eight hundred seventy Hereford cattle were sampled while on feed at Olsen Ranches, Inc. 
in Harrisburg, Nebraska where they were fed a concentrate ration as previously described 
(Saatchi et al., 2014). Phenotypes and DNA samples were collected over a three year period 
(2009-2011). Date of birth (DOB), date of weaning, sex (S), breed composition, days on feed 
(DOF), feed intake (DMI) and weights were collected.  All cattle were fed a minimum of 70 
days. Feed intake and body weight gain were measured with a GrowSafe (Airdrie, Alberta 
Canada) system. There were nine male contemporary groups that consisted of a total of 824 
steers and one female contemporary group that consisted of 23 heifers. Four hundred eighty-nine	
cattle were genotyped with the BovineHD and 358 were genotyped with the BovineSNP50 
assays. BovineSNP50 genotypes were imputed with Beagle 4.1 to the density of the Illumina 
BovineHD BeadChip using the 489 BovineHD genotyped Hereford cattle as a reference.  
Animals were removed from the analysis if the genotype call rate was less than 90%, if they 
were predicted to be Klinefelter (XXY) individuals or if phenotypic information (average daily 
gain [ADG], mid test metabolic weight [MMWT] or DMI) used to calculate RFI was missing.  
Heterozygosity of > 0.2 for non-pseudoautosomal region markers on the X chromosome was 
evaluated to confirm anatomical gender.  A total of 847 Hereford cattle remained for the GSEA-
SNP. Single nucleotide polymorphisms were removed if less than 90% of the genotypes were 
successfully called, if the minor allele frequency was less than 1% or if they failed the Hardy-
Weinberg equilibrium (p < 1.0x10-100) test. 

 Genome-wide association analysis (GWAA) was performed using the GRAMMAR 
mixed model software in GenABEL (http://www.genabel.org/; Aulchenko et al., 2007). Residual 
feed intake was calculated by subtracting expected DMI (dependent variable) from the actual 
DMI. Expected DMI was calculated by incorporating covariates for ADG, MMWT, 
contemporary group (CG), S, DOB and DOF to estimate RFI (Animal + e) as shown in equation 
1.  

Equation 1. Calculation of residual feed intake 

DMI = βo+ β1(ADG) + β2(MMWT) + β3(CG) + β4(S) + β5(DOB) + β6(DOF) +Animal + e  

 The most significantly associated SNPs for each of the 19,723 annotated genes in the 
UMD3.1 reference assembly (http://bovinegenome.org/?q=node/61) were selected as a proxy for 
each gene and used for the GSEA-SNP. Gene proxies were only considered for SNPs that were 
located within 8.5 kb of a gene as this was representative of the average haplotype block size in 
Herefords as determined by a haplotype block analysis performed in the SNP Variation Suite 8.1 
software (Golden Helix, Bozeman, MT) and finding the average distance between the beginning 
and ending nucleotide positions for each haplotype block. The GSEA-SNP analysis was 
conducted using a composite of 4,389 gene sets taken from Gene Ontology (GO; 
http://geneontology.org/) (n= 3,147), Kyoto Encyclopedia of Genes and Genomes (KEGG;  
http://www.genome.jp/kegg/) (n=186), Reactome (http://www.reactome.org/) (n=674) , Biocarta 
(http://www.genecarta.com/) (n=217), and Panther (http://www.pantherdb.org/) (n=165). 
Significance was calculated using the null distribution estimated from 10,000 permutations for 
each gene set using GenABEL in R (Holden et al., 2008). An enrichment score was calculated 
for each pathway using a modified Kolmogorov-Smirnov statistic, and these were normalized 
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(NES) based on the size of each gene set. Gene sets with NES > 3.0 were identified as associated 
with RFI. 

Results and Discussion 

 Two GO gene sets, centrosome (5) (GO:0005813) and cytoskeleton organization (4) 
(GO:0007010) and one KEGG gene set, peroxisome (KEGG:04146) were associated with RFI 
(Table 1). The centrosome gene set is a member of the cellular component ontology tree. 
Centrosomes are critical in mitosis and meiosis as the spindle apparatus of the cell is organized 
by the centrosomes. Disruption of the centrosome affects the proper segregation of chromosomes 
in the dividing cell and the stability of the genome (Lerit and Poulton, 2016). Centrosomes are 
cell organization centers around which hundreds of proteins are found that regulate the cell cycle 
(Conduit et al., 2015). The centrosome gene set consists of 99 genes, and 37 of those genes are 
leading edge genes or genes that are enriched among those associated with RFI (Table 1). Fifteen 
of the leading edge genes in the centrosome gene set were also leading edge genes in the 
cytoskeleton organization gene set (Table 1).  In addition to these genes being involved in 
centrosome and cytoskeleton organization in the cell, many of these genes play a role in tumor 
growth in a host of cancers. Of the leading edge genes, CEP120 has been associated with 
abdominal obesity as measured by waist circumference in humans, although no direct 
associations with feed efficiency have been reported (Wen et al., 2016). 

 The cytoskeleton organization gene set is part of the biological process ontology tree. The 
cytoskeleton is responsible for maintaining the shape of the cell and is involved in cellular 
movement, cell division, and endocytosis. The cytoskeletal organization gene set has previously 
been associated with feed efficiency traits in poultry. Cytoskeletal genes have been 
downregulated in breast muscle in high feed efficiency broiler chickens (Kong et al., 2011). 
Others have identified the role of regulation of actin cytoskeleton as an important component of 
feed efficiency and compensatory gain in cattle (Rolf et al., 2012; Keogh et al., 2016). The 
regulation of actin cytoskeleton organization shares some similarity (3.84%) to that of the 
cytoskeleton organization gene set in that it is involved in the processes that disassemble 
cytoskeleton structures or their proteins.  The cytoskeleton organization gene set consists of 246 
genes of which 97 were associated with RFI. 
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Table 1. Gene Sets and Leading Edge Genes Associated with Residual Feed Intake. 

Gene Set NES1 

(nominal 
p value) 

Gene set size  
(# leading 
edge genes) 

Leading Edge Genes shared between gene sets2 

Centrosome (5) 
(GO:0005813) 

3.19 
(p=0.0010) 

99 (37) Centrosome & cytoskeleton organization gene sets: 
SLC9A3R1, CEP120, BIRC5,HEPACAM2, TUBG1, 
MAP10, USP33, BBS4 TBCCD1, CSNK1D, CEP57, 
LZTS2, CTNNB1, CYLD, SLAIN2 

Cytoskeleton 
organization (4) 
(GO:0007010) 

3.07 
(p=0.0011) 

246 (97) Cytoskeleton organization & peroxisome gene sets: 
SOD1 

Peroxisome 
(KEGG:04146) 

3.05 
(p=0.0016) 

73 (30)  

1Normalized enrichment score; 2Leading edge genes are those that are enriched (significant) within the 
gene set. 

 Thirty leading-edge genes were associated with RFI in the peroxisome gene set and one 
gene (SOD1) was shared between the cytoskeleton organization and peroxisome gene sets. The 
peroxisome gene set is part of the cellular process ontology tree and is involved in cellular 
transport and catabolism. Peroxisomes are small organelles whose functions are essential in free 
radical detoxification, lipid homeostasis and hydrogen peroxide metabolism. The peroxisome 
transports medium chain fatty acids to the mitochondria where most of the β-oxidation occurs. 
The efficiency and ability of the peroxisome to function in lipid metabolism and to neutralize 
free radicals is essential in maintaining cellular membrane integrity and animal health. 
Mitochondrial biogenesis may play a role in shifts of muscle fiber types which may also impact 
feed efficiency (He et al., 2016). Although peroxisome proliferator activated protein gamma 
(PPARG) was not a leading edge gene in this study, it has been identified as an important 
regulator of food intake and energy homeostasis in rodents (Larsen et al., 2003; Festuccia et al., 
2008). 

Conclusion 

 Costs incurred with feeding constitute the major portion of the expense of raising cattle. 
Cattle that are able to develop, grow and maintain their body weight with less feed are more feed 
efficient. Identifying cattle that are more resource efficient through collection of daily feed intake 
and body weights is expensive and requires specialized equipment which has limited the 
collection of these data. The use of genomic markers to identify efficient cattle will provide a 
means of selecting breeding stock without the collection of expensive phenotypes on all animals. 
This study evaluated which biological pathways are involved in those cattle that were more feed 
efficient using RFI as the phenotype. Three pathways, centrosome (5), cytoskeleton organization 
(4) and peroxisome were associated with RFI, representing 191 unique genes. These genes are 
positional and functional candidates for use as genomic markers for RFI in beef cattle. Gene set 
enrichment analysis of Angus, Angus x Simmental and crossbred cattle are also being conducted 
to examine and compare in other beef cattle breeds. 
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Introduction 

 Profitability, within all sectors of beef production, is a function of inputs and outputs. In 
production systems, individual feed consumption represents the greatest financial burden (Miller 
et al., 2001). However, a majority of the intake evaluations performed in beef cattle have been 
conducted in cattle fed grain-based diets rather than those grazing forages. Furthermore, 
regulation of feed intake is influenced largely by diet type; thus, there may be limitations of 
using feedlot intake information in heifer development systems. For example, intake of grain-
based, high energy feeds is controlled metabolically or chemostatically (NRC, 1996), whereas 
when poor quality, roughage-based diets are fed, intestinal capacity, “gut-fill”, limits intake 
(Mertens, 1994). In addition, Durunna et al. (2011; 2012) discovered that feed efficiency 
reranking occurs in cattle fed different diet types at different biological stages. Therefore the 
regulation of feed intake of these different diet types may influence their efficiency of feed 
utilization, and some calves may be more efficient on different diet types.  

 Considering intake of forage and grain is regulated by different mechanisms, the 
hypothesis is that intake and efficiency will not be correlated across differing diet types, 
suggesting that feed intake and efficiency measures on differing diet types cannot be used 
interchangeably. We also hypothesize that intake evaluations can be shortened without losing 
accuracy; and feed efficiency can be measured at different stages of maturity in growing feedlot 
calves. This experiment has two objectives: 1) determine appropriate test length, timing, and 
repeatability of DMI, ADG, and efficiency over different biological time points; and 2) 
determine the relationship between forage-and grain-fed efficiency measures. 

Materials and Methods 

Two separate postweaning intake and performance evaluations were conducted on 
Charolais X SimAngus calves (n = 628; initial BW = 238 ± 46 kg, age = 211 ± 32 d). The 2 
performance and intake tests represent the 2 major biological periods in the feedlot: growing and 
finishing. Upon arrival at the feedlot and prior to the growing period, steers were transitioned 
over 3 wk to a grain-based growing diet consisting of 50% corn, 15% corn co-products, 25% 
corn silage, and 10% supplement. Heifers were fed a forage-base diet consisting of 47.5% corn 
silage, 47.5% alfalfa haylage, and 5% supplement. After completion of the 70 d growing period, 
heifers were transitioned over 3 wk from the forage-based diet to the grain-based diet. All cattle 
were fed the common, grain-based diet for the 70 d finishing period. 

Growing/Finishing Intake and Performance Data Collection 

Upon arrival, cattle were stratified by sire and allotted to pens equipped with a 
GrowSafe® automated feeding system (Model 4000E, GrowSafe Systems Ltd., 86 Airdrie, 
Alberta, Canada) so individual intakes could be recorded. For each performance and intake test 
(growing and finishing) a minimum of 70-d were required each year to calculate individual 
animal ADG and DMI. This complies with Beef Improvement Federation (BIF) 
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recommendations for performance data and intake collection (BIF, 2010). At the conclusion of 
the 70d finishing period test, individual feed intakes were no longer recorded using the 
GrowSafe system, as cattle were bunk fed for 60 ± 30 d until slaughter.  

 Performance data collection remained consistent for both years during both the growing 
and finishing performance tests. Initial and final BW for each test was the average of 2 
consecutive d BW measurements prior to morning feeding. All cattle were weighed every 2 wk. 
Individual animal ADG was calculated by regressing each individual weight of all time points 
during both the growing and finishing evaluation period. Individual mid-test metabolic BW 
(MW) was determined by the linear regression coefficients for each animal for the growing and 
finishing evaluation period.  

 At the conclusion of each test period, 12th rib fat thickness was measured via ultrasound, 
to account for the variation in residual feed efficiency measures due to body composition. 
Ultrasound measurements were taken by trained personnel using an Aloka 500SV (Wallingford, 
CT) B-110 mode instrument equipped with a 3.5-Mhz general purpose transducer array. Twelfth 
rib fat thickness measurements were taken in transverse orientation between the 12th and 13th ribs 
approximately 10 cm distal from the midline. Images were analyzed using CPEC imaging 
software (Cattle Performance Enhancement Company LLC., Oakley, KS). 

Total Intake Period Performance and Intake Data Collection 

 Individual feed intakes were recorded during the growing, transition, and finishing 
periods of this experiment for steers fed grain throughout the study; therefore, the combination of 
recorded individual DMI during these periods was identified as the 161-d total intake period 
DMI (161DMI). Initial and final BW represented the average of 2 consecutive days BW 
measurements during the growing and finishing periods, respectively. Individual animal ADG 
was calculated by regressing all weights taken over the course of the growing, transition, and 
finishing periods and was identified as (161ADG). One hundred sixty-one d total intake period 
mid-test metabolic BW (161MMW) was calculated using the ADG regression coefficients.  

Total Feeding Period Performance Data Collection 

 For steers fed the grain-based diet during both test periods, performance was evaluated 
for the duration of time on feed from feedlot arrival to slaughter. This method was used to 
determine total feeding period BW gain. Initial BW represented the BW of calves at arrival at the 
feedlot (age = 180 ± 29 d). Individual final BW was calculated by dividing HCW by a standard 
dressing percentage of 63%. Two total feeding period performance measures were calculated to 
test the relationship between traditional and regressed measurements of performance during an 
animal’s time on feed. Total feeding period ADG (FPADG) was calculated by the difference 
between initial and final BW, divided by the number of days between feedlot arrival and harvest. 
Regressed individual feeding period ADG (R_FPADG) was determined via regression of all 
weights taken from feedlot arrival to adjusted final BW. 

Test Duration for DMI 

To test the effects of intake evaluation period timing and duration, individual animal DMI 
during the growing period was divided into 10 total sections. Sections of intake during the 
growing period included: the final 7 d of intake (70_63DMI), the final 14 d of intake 
(70_56DMI), the final 21 d of intake (70_49DMI), the final 28 d of intake (70_42DMI), the 
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final 35 d of intake (70_35DMI), the final 42 d of intake (70_28DMI), the final 49 d of intake 
(70_21DMI), the final 56 d of intake (70_14DMI), the final 63 d of intake (70_7DMI), and the 
final 70 d of intake (70_0 DMI).   

Calculation of Feed Efficiency 

 Feed efficiency traits were determined for all cattle during the growing and finishing 
periods. Feed conversion ratio (FCR) represented the ratio of individual animal feed:gain, and 
was calculated by dividing individual average daily DMI by regressed ADG. Contemporary 
groups were assigned for each individual animal according to year born and sex. Individual 
animal residual feed intake (RFI) and residual BW gain (RG) were calculated for both growing 
and finishing periods. Residual feed intake was calculated using the PROC MIXED procedure of 
SAS (SAS Institute Inc., Cary, NC), and was assumed to represent the residuals of a multiple 
regression model regressing DMI on MW, ADG, and 12th rib fat thickness using pen as a random 
effect. Likewise, RG was calculated using the PROC MIXED procedure of SAS, and was 
assumed to represent the residuals of a multiple regression model regressing ADG on DMI, 
MMW, and BF using pen as a random effect.   

To test the concept of RFI using decoupled performance and DMI information, 35 d of 
recorded intake were evaluated along with FPADG as the measurement of individual animal BW 
gain, and mid-test BW was calculated by the average of calves’ initial and final BW, raised to 
the 0.75 power. The 35 d of recorded intake evaluated in this measure of feed efficiency 
represented the first and final 35 d of each feeding period. Residual feed intake represented the 
residuals of a multiple regression equation regressing 35 d of recorded DMI on FPADG, feeding 
period mid-test metabolic weight, and carcass BF using pen as a random effect.     

Statistical Analysis 

Simple pearson correlations were calculated for ADG, DMI, and efficiency for the 
growing, finishing, 160-d total intake period, and total feeding periods using the PROC CORR 
procedure of SAS. Pearson correlations were used to test the number of days required for 
accurate DMI estimates using the PROC CORR procedure of SAS. All rho values were 
considered significant when P ≤ 0.05. Correlations were considered strong when rho values were 
greater than or equal to 0.70; moderate when rho values were between 0.30 and 0.69; and weak 
when less than 0.29. 

Results and Discussion 

Relationships between grain-fed steer DMI, ADG and feed efficiency are presented in 
Table 1. Steers that consumed more feed during the growing period also had greater DMI during 
the finishing phase (r = 0.56; P < 0.05). The moderate association of DMI during the growing 
and finishing periods of this experiment reflects the results of Kelly et al. (2010), who reported a 
correlation of 0.61 between DMI when heifers were fed a 70:30 pelleted concentrate:corn silage 
diet during consecutive feeding periods. However, ADG was not repeatable in steers between the 
growing and finishing periods (r = 0.11; P = 0.06). Although this was a surprise, because DMI 
was repeatable and related to ADG in both periods, this phenomenon was also observed by Kelly 
et al. (2010); who also reported the same correlation of 0.11, and suggested that cattle ADG may 
re-rank compared to their contemporaries. Growing period RFI was moderately correlated (r = 
0.63; P < 0.05) to finishing period RFI. Although RG during the growing period was correlated 
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(r = 0.24; P < 0.05) to RG in the finishing period, the relationship was much weaker compared to 
RFI. Calculated FCR during the growing and finishing periods were also moderately correlated 
(r = 0.41; P < 0.05). The repeatability of these feed efficiency traits suggest that steers that had 
more desirable growing period feed efficiency were also more efficient during the finishing 
period.  

Table 1. Simple phenotypic correlations between postweaning traits for steers fed graina 

Item Grow 
DMI 

Grow 
ADG 

Grow 
RFI1 

Grow 
RG2 

Grow 
FCR3 

Finish 
DMI 

Finish 
ADG 

Finish 
RFI1 

Finish 
RG2 

Finish 
FCR3 

Grow 
DMI 1 0.64 0.49 0.00 0.51 0.56 -0.02 0.27 -0.30 0.44 

Grow 
ADG  1 0.00 0.71 -0.31 0.29 0.11 -0.04 -0.04 0.11 

Grow 
RFI1   1 -0.42 0.59 0.38 -0.06 0.63 -0.39 0.34 

Grow 
RG2    1 -0.76 -0.04 0.19 -0.28 0.24 -0.22 

Grow 
FCR3     1 0.38 -0.13 0.37 -0.30 0.41 

Finish 
DMI      1 0.49 0.66 0.00 0.22 

Finish 
ADG       1 0.00 0.77 -0.72 

Finish 
RFI1        1 -0.51 0.49 

Finish 
RG2         1 -0.84 

Finish 
FCR3          1 
a |R| values in bold are significant (P < 0.05) 
1 Residual feed intake 
2 Residual BW gain 
3 Feed conversion ratio expressed as feed:gain 

 

The fact that ADG was not repeatable across test period was not expected. However, 
there were moderate associations (0.69 ≥ r ≥ 0.58; P < 0.05) between growing and finishing 
ADG when compared to R_FPADG and FPADG (Table 2). This suggests that regardless of 
timing of the evaluation of postweaning gain, both periods can serve as similar proxies in 
determining the performance of a growing animal during its entire time spent on feed. The 
stronger correlation (0.96 ≥ r ≥ 0.81; P < 0.05) between 161ADG and R_FPADG and FPADG 
suggests that longer periods of performance evaluation may result in more accurate 
determinations of ADG over an animal’s entire lifespan. The strong, positive correlation (r = 
0.85; P < 0.05) between R_FPADG and FPADG suggests that cattle performance may be 
accurately predicted by dividing the difference of an animal’s final BW and feedlot arrival 
weight by the number of days on feed. This is important, because FPADG is a measure of 
performance that is widely accepted within the industry. When FPADG is calculated by dividing 
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the difference between adjusted HCW and feedlot arrival BW by the number of d on feed, 
FPADG can be an effective proxy for individual ADG over the lifespan of calves, which is 
supported by Retallick et al. (2015). 

 

 

 

 

As the number of recorded d of DMI increased, the association between number of d of 
recorded DMI and overall period DMI increased (Table 3). Due to a strong correlation of 0.95 (P 
< 0.05), this experiment suggests that only 35 d of recorded intake are sufficient for predicting 
70d test period DMI. However, when DMI intake is recorded for those 35 d makes a difference. 
Recorded DMI during the end of the growing period was a more accurate predictor of DMI 
during the finishing period. This study showed that in order to accurately predict DMI across 
different time points in life, not only is it important to record a sufficient amount of d, but the 
proximity of the different test periods being compared is an important factor to consider as well. 

 

 

 

Table 2. Simple phenotypic correlations between measurements of ADG 
during different feeding periods and biological timepointsa 

Item Growing Finishing 161ADG1 R_FPADG2 FPADG3 

Growing 1 0.11 0.57 0.58 0.58 
Finishing  1 0.76 0.69 0.58 
161ADG1 

  1 0.96 0.81 
R_FPADG2 

   1 0.85 
FPADG3 

    1 
a |R| values in bold are significant (P < 0.05) 
1 161 d intake period 
2 Total feeding period (regressed ADG) 
3 Total feeding period 

Table 3. Simple phenotypic correlations during different durations of mean DMI 
observations from the end of the 70d growing period in grain fed steersa 

Item 70-0DMI FDMI1 161DMI2 

70-63DMI 0.88 0.58 0.86 
70-56DMI 0.87 0.62 0.87 
70-49DMI 0.89 0.62 0.88 
70-42DMI 0.92 0.61 0.89 
70-35DMI 0.95 0.61 0.90 
70-28DMI 0.97 0.58 0.89 
70-21DMI 0.98 0.56 0.89 
70-14DMI 0.99 0.56 0.90 
70-7DMI 1 0.56 0.90 
70-0DMI 1 0.56 0.90 
FDMI1 

 
1 0.85 

161DMI2 

  
1 

a |R| values in bold are significant (P < 0.05) 
1 Finishing period DMI (d91-161DMI) 
2 161 d intake period total DMI (d0-161DMI) 

61



Minimal work has been done investigating the idea of decoupling performance and intake 
information when determining the feed efficiency of a feedlot steer during its entire time on feed. 
Interest in this concept is due to the fact that accurate measures of DMI and ADG require 
substantially different durations, and performance and intake evaluation tests are costly. Total 
beef production efficiency can be improved when a greater number of animals are tested 
annually; therefore, more cost effective ways to test growing animals are needed. In our trial, 
comparisons were made between RFI values using short duration intake test periods (35 d) with 
FPADG; and RFI measures calculated by the standards set forth by the BIF (Table 4). 
Relationships ranged from strong to weak (0.85 ≥ r ≥ 0.28; P < 0.05) between these measures of 
RFI using decoupled DMI and ADG and 70 d test period RFI. This suggests that there is a 
possibility that these alternative measurements of RFI may have efficacy to the industry and 
should be further investigated. 

Table 4. Simple phenotypic correlations between measures of feed efficiency for grain fed 
steers during the growing, finishing, and total feeding period using decoupled DMI and ADG 
variables in the predicted DMI model in the total feeding perioda  
Item Growing RFI1 Finishing RFI1 

0-35RFI2 0.70 0.28 

36-70RFI3 0.54 0.62 
90-125RFI4 0.56 0.85 

126-161RFI5 0.46 0.79 
a |R| values in bold are significant (P < 0.05) 
1 Residual feed intake 
2 Total feeding period residual feed intake when predicted total feeding period DMI is a linear 
function of the first 35d of recorded DMI during the growing period, FPADG and mid-test 
metabolic BW, and carcass BF. 
3 Total feeding period residual feed intake when predicted total feeding period DMI is a linear 
function of the final 35d of recorded DMI during the growing period, FPADG and mid-test 
metabolic BW, and carcass BF. 
4 Total feeding period residual feed intake when predicted total feeding period DMI is a linear 
function of the first 35d of recorded DMI during the finishing period, FPADG and mid-test 
metabolic BW, and carcass BF. 
5 Total feeding period residual feed intake when predicted total feeding period DMI is a linear 
function of the final 35d of recorded DMI during the finishing period, FPADG and mid-test 
metabolic BW, and carcass BF. 
 

Regulation of feed intake may differ when cattle are fed differing diet types, and DMI is 
related to energy content of the feed delivered (NRC, 1996) or physical fill. Since DMI plays a 
vital role in feed efficiency, mechanisms of intake regulation for divergent diet types may 
confound the accuracy of comparing RFI of cattle when fed grain or forage. Minimal research 
has been conducted comparing RFI values when cattle are fed differing diet types. Comparisons 
of feed intake and efficiency when two different diet types are fed are presented in Table 5. The 
correlation between forage and grain DMI was 0.58 (P < 0.05). This linear relationship of DMI 
closely parallels the relationship of DMI during the growing and finishing period of grain fed 
steers (0.56), and in this study, suggests mechanisms of intake regulation on these diet types may 
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not differ. The moderate, positive correlation (r = 0.40; P < 0.05) between RFI values derived 
from forage and grain based diets suggested that growing cattle that were more efficient when 
fed forage were also more efficient when fed grain. This is an important discovery, as most feed 
intake and subsequent efficiency tests are done in feedlot-like test stations. 

 

Conclusions 

Relationships existed between measures of feed efficiency and intake across diet type and 
test period. Accurate feed efficiency measures can be obtained in either the growing or finishing 
period of feedlot cattle. The relationship of forage and grain DMI and efficiency in heifers 
suggests that measures of DMI and feed efficiency in heifers are relevant, regardless of diet fed. 
This suggests that DMI and efficiency information derived from the feedlot may have 
application to the cowherd. Limitations on test period length are due to the number of d to 
accurately assess individual ADG. Since intake evaluation periods can be shortened without 
losing accuracy in predicting individual animal DMI, decoupling performance from DMI 
information may be the most cost effective way to test a greater number of animals annually. 

Table 5. Simple linear phenotypic correlations between postweaning traits in heifers fed different 
dietsa 

Item Forage 
DMI 

Forage 
ADG 

Forage 
RFI1 

Forage 
RG2 

Forage 
FCR3 

Grain 
DMI 

Grain 
ADG 

Grain 
RFI1 

Grain 
RG2 

Grain 
FCR3 

Forage 
DMI 1 0.25 0.69 0.00 0.24 0.58 -0.01 0.24 -0.26 0.43 

Forage 
ADG  1 0.00 0.53 -0.72 0.16 -0.30 -0.03 -0.17 0.42 

Forage 
RFI1   1 -0.29 0.39 0.25 0.00 0.40 -0.17 0.17 

Forage 
RG2    1 -0.53 -0.08 -0.11 -0.15 -0.10 0.05 

Forage 
FCR3     1 0.14 0.27 0.17 0.06 -0.16 

Grain 
DMI      1 0.36 0.65 0.00 0.38 

Grain 
ADG       1 0.00 0.82 -0.70 

Grain 
RFI1        1 -0.36 0.46 

Grain 
RG2         1 -0.79 

Grain 
FCR3          1 
a |R| values in bold are significant (P < 0.05) 
1 Residual feed intake 
2 Residual BW gain 
3 Feed conversion ratio expressed as feed:gain 
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More research is needed to further investigate novel methods of testing for feed efficiency with 
the vision of improving beef production efficiency as a whole. 
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Introduction 

 There is considerable variation in the efficiency that cattle convert feed for maintenance 
and product (body weight gain, milk, and conceptus).  Both intake and gain are polygenic traits 
and to better understand factors that contribute to variation in feed efficiency more defined 
phenotypes are needed.  Several studies have associated differences in the microbiota of the 
alimentary tract between obese and non-obese rodents (Turnbaugh et al., 2006), obese and non-
obese humans (Ley et al., 2006), and energy metabolism in birds (Torok et al., 2008 and Stanley 
et al., 2013).  These finding suggest that there is a potential relationship between the microbiota of 
the alimentary tract and feed efficiency in beef cattle.  Considerable research has been conducted 
on the rumen microbiota, but less consideration has been given to the rest of the alimentary tract. 

 Changes in the microbial community of the rumen-reticulum complex with changes in diet 
as well as across species of ruminants have been documented.  The observed diversity in the 
microbiota has been limited to those organisms that can be cultured.  The rumen is an anaerobic 
environment and many of the strict anaerobes are difficult to culture in vitro.  The concern has 
been that relative differences in microbial species may have been a function of the ease of culturing 
some species in vitro and that the ability to grow in vitro is not indicative of their relative 
proportion of the rumen-reticulum microbiota.  Using next-generation sequencing provides a tool 
to estimate the makeup of the microbiota by identifying bacteria by their DNA sequence rather 
than enumerating them through culture techniques. 

 Two studies were conducted as part of the Agriculture and Food Research Initiative 
Competitive Grant 2011-68004-30214 from the USDA National Institute of Food and Agriculture 
to determine the relationships between the microbiota and feed efficiency.  The results of this 
research have been reported by Myer et al. (2015a, 2015b, 2015c, and 2016) and Freetly et al. 
(2015). 

Study 1 – Microbial community profiles of the rumen-reticulum, jejunum, cecum, and 
colon of steers differing in feed efficiency. 

 Steers for this study were selected from two contemporary groups that individual feed 
intake and body weight were measured for a 63-d period.  Group 1 (n = 148) was comprised of 
spring-born calves that were 371 ± 1 d of age and weighed 522 ± 4 kg at the start of the feed 
intake measurements.  Group 2 (n = 197) was comprised of fall-born calves that were 343 ± 1 d 
of age and weighed 448 ± 4 kg at the start of the feed intake measurements.  Steers were fed a 
ration that on a dry matter basis consisted of 57.35% dry-rolled corn, 30% wet distillers grain 
with solubles, 8% alfalfa hay, 4.25% supplement (containing 772 mg monensin/kg), and 0.4% 
urea.  At the end of each feeding period, steers were ranked based their standardized distance 

65



from the bivariate mean for average daily gain (ADG) and average daily feed intake (ADFI) 
assuming a bivariate normal distribution with a calculated correlation between ADG and ADFI .  
Within each contemporary group, four steers with the greatest deviation within each Cartesian 
quadrant were sampled (n = 16 steers/contemporary group).  The resulting design was a 2 X 2 
factorial consisting of greater and less ADG and greater and less ADFI. 

At the end of the feeding period, selected steers were slaughtered and digesta was 
collected from the rumen-reticulum, jejunum, cecum, and colon.  Samples were buffered in 
peptone water (pH 7.0) + 15% glycerol and stored at -70°C.  Deoxyribonucleic acid (DNA) was 
extracted from the samples.  Amplicon library preparations were performed by PCR 
amplification of the V1 through V3 hypervariable region of the 16S rRNA gene.  The PCR 
amplicon libraries were sequenced using the 2 X 300, v3 600-cycle kit and the Illumina MiSeq 
sequencing platform (Illumina, Inc., San Diego, CA). 

Sequences were processed using the QIIME 1.8.0 software package (Caporaso et al., 
2010).  Paired reads were joined using fastq-join (Aronesty, 2011) and filtered for quality using 
the Galaxy server (Blankenberg et al., 2010).  Chimeric sequences were checked using 
ChimeraSlayer (Haas et al., 2011).  All cleaned sequences were classified into taxa using 
Greengenes 16S rRNA Gene Database (DeSantis et al., 2006).  Operational taxonomic units 
(OTU) were calculated using the uclust program (0.03 dissimilarity; Edgar, 2010).  After 
calculating richness for each quadrant, singletons were removed from further diversity analyses.  
Based on rarefaction curves, the number of OTU was normalized via subsampling 25,000 
sequences from each sample.  A phylogenic tree was built with FastTree (Price et al., 2010) to 
determine α- and ß-diversity metrics. 

The mean abundance of data metrics and each taxon were compared among feed 
efficiency groups with contemporary group and Cartesian quadrant as fixed effects.  Differences 
were determined at P < 0.05 with Benjamini-Hochberg method used for multiple-testing 
corrections (Benjamini and Hochberg, 1995)  Multiple-testing corrections were made for the 
number of phyla, the number of OTU groups, and other classified taxa groups.  Linear contrasts 
were applied to quadrants to separate whether microbial populations varied by ADG, ADFI or 
the interactions.  Principal coordinate analysis was performed using weighted and unweighted 
UniFrac analyses (Lozupone and Knight, 2005). 

In the study, the rumen content yielded an average of 1,098 ± 382 OTU, of which were 
classified into 24 phyla, 48 classes, 89 orders, 173 families, and 317 genera.  The bacterial 
diversity was reflected by the diversity index of 6.85 ± 0.36 (Shannon).  Although the rumen has 
a great abundance of microorganisms, their functionality is more specialized, which may result 
in a lower diversity index than that of the large intestine.  Indeed, the most abundant phyla in the 
rumen were Bacteroidetes and Firmicutes, present at abundances of 53 to 63% and 23 to 33%, 
respectively.  However, over 90% of the Bacteriodetes phylum was composed of the genus 
Prevotella, exemplifying this specialization.  Reports have indicated that Prevotella is the most 
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abundant ruminal genus (Stevenson and Weimer, 2007), and these data overwhelming supported 
those findings. Along with the Prevotella abundances (45 to 57%), the bacterial genera in the 
rumen representing ≥1% of the total sequences included Dialister (2.6 to 4.1%), 
Succiniclasticum (2.0 to 4.0%), Ruminococcus (1.0 to 2.5%), Butyrvibrio (0.5 to 1.1%), and 
Mitsuokella (0.6 to 1.2%). 

Compared to the rumen, changes in the bacterial populations of the jejunum were 
anticipated, as the role of this alimentary tract segment transitions more towards host digestion of 
nutrients and absorption.  The bacterial population of the jejunum was greatly reduced in species 
abundance and diversity compared with that of the rumen, with an average of 499 ± 159 OTU 
and a diversity index of 3.91 ± 0.48.  These OTU were classified into 21 phyla, 51 classes, 94 
orders, 198 families, and 397 genera.  The differences in function between the rumen and the 
jejunum were reflected in the bacterial abundances, as the phylum Firmicutes accounted for up to 
90% of the populations in the jejunum, and Bacteroidetes was greatly reduced to 0.4 to 1.1%.  
Actinobacteria (6 to 13%) made up the greatest abundance of the remaining phyla, followed by 
Proteobacteria (0.8 to 5.8%), and Tenericutes (0.4 to 4%).  Genera and OTU representing ≥1% of 
the total sequences included Ruminococcus (12.2 to 19.6%), Butyrivibrio (2.6 to 7.7%), 
Lactobacillus (2.8 to 4.2%), Bulleidia (0.8 to 1.9%), Mogibacterium (1.1 to 1.7%), Mitsuokella 
(0.05 to 1.27%), and Propionibacterium (0.07 to 7%).  

The role of postruminal degradation of cellulose and starch as well as the importance of 
microbial interaction and the maturation of the mucosal immune system highlights the changes 
in abundance and diversity of bacterial populations observed in the cecum.  The cecum averaged	
5,572 ± 1,428 OTU with a bacterial diversity index of 7.89 ± 0.47 (Shannon).  These data were 
far greater than that of the rumen and jejunum.  The cecal OTU were classified to 18 phyla, 40 
classes, 75 orders, 148 families, and 225 genera.  Similar to the jejunum, Firmicutes was the 
most abundant phylum at 68 to 81% of the total sequences.  However, Bacteroidetes was greater 
in abundance compared to the small intestinal segment, at 18 to 26%, followed by the phyla 
Spirochaetes (1.4 to 3.19%), Tenericutes (0.7 to 1.2%), and Actinobacteria (0.2 to 0.4%). The 
remaining phyla accounted for less than 0.1% of the sequences.  Abundant genera consisted of 
Prevotella (2.1 to 7.3%), Turicibacter (4.6 to 6.7%), Coprococcus (1.2 to 2.8%), Ruminococcus 
(1.5 to 2.7%), Dorea (2.2 to 3.3%), Blautia (0.5 to 2.0%), Clostridium (1.0 to 1.2%), and 
Oscillospira (1.1 to 1.6%).   

Although the colon microbial communities are likely to be similar to those of the cecum, 
as digesta travels to the more distal regions of the gastro-intestinal tract (GIT) functionality as 
well as environmental conditions shift.  Appropriately, the bacterial species abundance and 
diversity of the colon was greater than the cecum, and expectedly more similar than the jejunum 
or rumen, averaging 6,025 ± 1,225 OTU and an average diversity index of 8.05 ± 0.20 
(Shannon).  The OTU were classified to 20 phyla, 46 classes, 83 orders, 152 families, and 231 
genera.  Most similar to the cecum, but continuing the trend in the lower intestinal tract, the 
colon bacterial population predominantly consisted of Firmicutes (60-70%).  As digesta moves 
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distally, a trend of greater Bacteroidetes populations was observed, compared to the jejunum and 
cecum, where this phylum was present in the colon at abundances of 21–33%.  Abundances of 
remaining phyla greater than 0.1% of the sequences consisted of Spirochaetes (2.5–4.5%), 
Tenericutes (1.2–1.9%), Proteobacteria (0.3–0.5%), Actinobacteria (0.23–0.33%), and 
Fibrobacteres (0.02–0.29%).  The bacterial genera present in greatest abundance within the colon 
were Prevotella (3.0–11.1%), Ruminococcus (1.7–2.9%), Coprococcus (1.0–2.9%), Dorea (1.7–
2.2%), Turicibacter (1.9–4.4%), Blautia (0.3–1.3%), Oscillospira (1.1–1.6%), and 
Parabacteroides (0.4–1.4%).   

 

 

 

 

 

Within the rumen, although bacterial abundances were consistent with other research 
(Jami et al., 2014), significantly increased populations of Firmicutes were observed within the 
ADGGreater – ADFILess group (P = 0.0364), representing the feed efficient group.  This association 
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was of note, for changes in Firmicutes-to-Bacteroidetes ratio is often implicated in obesity 
research (Ley et al., 2006), and has been correlated with energy harvesting and fat increases in 
dairy cattle (Jami et al., 2014).  Other taxa and OTU abundances were associated with varying 
degrees of efficiency based on the experimental design, which may play important roles in the 
fermentative and cellulolytic capacity of the rumen based upon their putative functions. Those 
abundances associated with the ADGGreater-ADFIGreater group included increases in Prevotella (P 
= 0.0154), Lactobacillus (P = 0.0419), and Dialister (P = 0.0062) populations, whereas 
Anaerovibrio (P = 0.0291) was least prevalent. The ADGGreater-ADFILess group included 
increases in Butyrivibrio (P = 0.0391) and Leucobacter (P = 0.0215).  The ADGLess-ADFILess 
group included increases in Ruminococcus (P = 0.0255) abundances, but decreases in 
Acidaminococcus (P = 0.0306).  Finally, the ADGLess-ADFIGreater group saw increases in 
Lysobacter (P = 0.0462), Janibacter (P = 0.0161), and Succiniclasticum (P = 0.0276) 
populations.  Additionally, the data were analyzed to determine whether microbial populations 
differed by less vs. greater ADG, less vs. greater ADFI, or their interaction.  Within the rumen, 
the significant changes in microbial abundances were primarily associated with ADG. 

Jejunal microbial population analyses significantly associated the genus Butyrivibrio, and 
its family Lachnospiraceae, with the ADGGreater–ADFILess group; the feed efficient group.  The 
Butyrivibrio species of greatest abundance that was significant for this association ranged from 
1.9 to 6.0% (P = 0.041).  This may be important functionally, as the hemicellulolytic 
Butyrivibrio can ferment a wide range of sugars, as well as influence the energy pool to 
enterocytes via butyrate production.  The phylum Proteobacteria (P = 0.030) was also associated 
with the ADGGreater–ADFILess group, and has been demonstrated to negatively correlate with 
Firmicutes populations, as well as positively correlate with feed conversion ratio (Cook et al., 
1994; Jami et al., 2014).  Several other taxa were significantly associated with variation among 
feed efficiency groups, such as increases in the AA-fermenting genus Acidaminococcus (P = 
0.018; ADGGreater-ADFILess) and the obligately oxalotrophic, ammonium-dependent, aerobic 
genus Ammoniphilus (P = 0.022; ADGLess-ADFIGreater).  All significant taxa and OTU were 
associated with ADG or the interaction of ADG and ADFI.  Interestingly, Butyrivibrio was the 
only assignment that was solely associated with intake. 

The evaluation of the cecal bacterial communities revealed no significant differences 
among the feed efficiency groups at phylum-level abundances.  However, among OTU and 
genus level abundances, Prevotella (P = 0.042), Blautia (P = 0.042), Coprobacillus (P = 0.004), 
Dorea (P = 0.042), Clostridium (P = 0.044), and Parabacteroides (P = 0.027) were detected 
with greatest abundance within the ADGGreater-ADFIGreater group, while Ruminococcus (P = 
0.040) and Oscillospira (P = 0.041) were least abundant within the group. The species 
Lactobacillus ruminis (P = 0.047) was also least abundant in the ADGLess-ADFIGreater group.  The 
genus Blautia is of recent research interest due to its ubiquitous presence among humans and 
other mammals.  These bacteria exist at low abundances, but are thought to contribute to the 
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metabolic capacity of the host by providing energy from polysaccharides that other gut 
commensals cannot degrade (Eren et al., 2015).   

Similar to the cecum, no significant differences among the feed efficiency groups were 
observed within the bacterial community abundances of the colon.  Differences among the 
groups did exist at lower levels of classification and at the OTU-level.  Among taxa, these 
organisms included Anaeroplasma (P = 0.0222), Paludibacter (P = 0.0226), Faecalibacterium 
(P = 0.0361), Succinivibrio (P = 0.0412), and Pseudobutyrivibrio (P = 0.0479).  Anaeroplasma 
and Faecalibacterium were in greatest abundance within the ADGGreater–ADFIGreater group, 
Paludibacter was in greatest abundance within the ADGLess– ADFILess group, and Succinivibrio 
and Pseudobutyrivibrio were least abundant within the ADGGreater–ADFILess and ADGLess–
ADFIGreater groups, respectively.  Coprococcus (P = 0.0323) and Clostridium (P = 0.0446) were 
in greatest abundance within the ADGGreater–ADFIGreater group, while Dorea (P = 0.0225) was 
least abundant within this group.  Butyrivibrio (P = 0.0240) and Prevotella (P = 0.0435) were 
greatest in the ADGLess–ADFIGreater group; the least efficient group, while the abundance of 
Oscillospira (P = 0.0456) was greatest within the ADGLess– ADFILess group. The butyrate 
producing and strong xylan-degrading activities of Butyrivibrio and Pseudobutyrivibrio species 
may lend further insight to their association with feed efficiency in the colon (Morgavi et al., 
2013).  The bacterial populations within both the cecum and colon were solely associated with 
intake and/or the interaction of gain and intake, but not gain alone, which may be expected as 
digesta travels further from the fermentative and digestive sections of the GIT.   

Determination of the microbial population associations with feed efficiency, ADG, and 
ADFI throughout the alimentary tract provides great insight as to the interactions that may occur 
at both the host and microbial levels based on the putative functions of the organisms involved.  
As these tissues are distinct in function and environment, so are their microbial populations and 
effect on the host.  The varying microbial phylogenetic diversity and abundance along the tract 
likely also plays a role, and is a function of, the degree of specialization. However, it is not clear 
whether changes in the microbiome are contributing to differences in feed efficiency or host 
factors are driving changes in the microbiome. 

Study 2 – Methane production and methanogen levels in steers that differ in residual gain. 

Individual feed intake and body weight were measured on 132 fall-born steers for a 70-d period.  
At the start of the study, steers were 348 ± 1 d of age and weighed 444 ± 0.4 kg.  Steers had ad 
libitum access to a ration that as a percentage of dry matter consisted of 82.75% dry-rolled corn, 
12.75 corn silage, 4.5% supplement.  The supplement contained 0.95% Rumensin-80.  Seven 
steers with extreme positive residual gain (RG), and seven steers with extreme negative RG 
whose dry matter intake was within 0.32 standard deviations of the means were selected for 
subsequent measurements. 
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 In vivo methane production was measured over a 6-h period using a headbox respiration 
chamber.  Steers were subsequently slaughtered and rumen and cecum contents were sampled to 
determine in vitro methane production.  In vitro methane was determined in vials gassed with 
hydrogen over 2 through 8 h of incubation. 

 Digesta samples were collected from the rumen, cecum, and rectum at slaughter for the 
determination of methanogen 16S rRNA.  Deoxyribonucleic acid was extracted from the digesta 
samples.  Primer sets that targeted conserved regions of the 16S rRNA gene were used in real-
time quantitative PCR using a LightCycler 480 (Roche, Indianapolis, IN) to measure total 
bacteria, total methanogens, Methanomicrobiales, Methanobacteriales, Methanosarcina, 
Methanobacterium, Methanobrevibacter Group 1 (Mbb. ruminantium + Mbb. cutcularis), and 
Methanobrevibacter Group 2 (Mbb.. smithii + Mbb. wolinii + Mbb. thaueri + Mbb. gottschalkii 
+ Mbb. woesi).  The experimental design for the level of methanogens was a 2 × 3 factorial.  The 
main effects were RG and alimentary tract location. 

 In vivo enteric methane production did not differ (P = 0.11) between the positive RG (112 
± 13 L/d) and the negative RG (74 ± 13 L/d).  In vitro rumen methane production did not differ 
between positive RG (64.26 × 10-5 ± 10.85 × 10-5 mmol·DM g-1·min-1) and negative RG (61.49 × 
10-5 ± 10.85 × 10-5 mmol·DM g-1·min-1; P = 0.86).  In vitro cecum methane production did not 
differ between positive RG (4.24 × 10-5± 1.90 × 10-5 mmol·DM g-1·min-1) and negative RG (4.35 
× 10-5± 1.90 × 10-5 mmol·DM g-1·min-1; P = 0.97). 

Methanogen 16S rRNA as a percent of the total 16S rRNA bacteria did not differ 
between RG groups (P = 0.18).  The methanogen 16S rRNA as a percentage of rumen fluid total 
bacteria 16S rRNA (5.3 ± 3.1%) did not differ from the methanogen 16S rRNA as a percentage 
of cecum content total bacteria 16S rRNA (11.8 ± 3.1%; P = 0.14).  The methanogen 16S rRNA 
as a percentage of the rectum content total bacteria 16S rRNA (0.7 ± 3.1%) was not different 
than the rumen content (P = 0.29), but was less than the cecum content (P = 0.01).  
Methanomicrobiales 16S rRNA as a percentage of total methanogen 16S rRNA did not differ 
across sample sites (P = 0.81); however, steers with positive RG (10.5 ± 1.6%) was greater 
compared to steers with negative RG (5.1 ± 1.6%; P = 0.02). As a percent of the total 
methanogen 16S rRNA, 16S rRNA of Methanobacteriales (P = 0.23), Methanobacterium (P = 
0.60), and the Methanobrevibacter Group 2 group (P = 0.41) did not differ between RG groups.  
Methanobacteriales and the Methanobrevibacter Group 2 had a greater percentage of the total 
methanogen 16S rRNA in the rumen compared to the cecum and rectum which did not differ 
from each other.  Methanobacterium was a lesser percentage of the total methanogen gene 16S 
rRNA in the rumen compared to the cecum and rectum which did not differ from each other.  
Methanobrevibacter Group 1 did not differ between RG group (P = 0.25) and tended to differ 
with collection site.  The percentage of 16S rRNA of Methanosarcina did not differ with RG 
group (P = 0.42) or collection site. 
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In our study, total methanogens represent approximately 5% of the total bacterial 16S 
rRNA in the rumen which is similar to what Frey et al. (2010) observed in the dairy cow and 
there was not a difference between the RG groups.  These findings are consistent with the lack of 
a difference in rumen in vitro methane production.  In our study and the study of Popova et al. 
(2013) in sheep, the cecum had a lower in vitro methane production than the rumen.  Similar to 
the rumen, there were no differences in methane production between the RG groups. 

The relative contribution of the different methanogens differed across sites in the 
alimentary tract; however, with the exception of Methanomicrobiales 16S rRNA did not differ 
between RG groups.  This shift in Methanomicrobiales 16S rRNA was not reflected in the Total 
Methanogen 16S rRNA.  The lack of difference in Total Methanogen 16S rRNA is consistent 
with the lack of difference in methane production.  Our findings do not support the hypothesis 
that differences in RG at an average intake are a consequence of differences in methane 
production or methanogen populations in the alimentary tract. 
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Introduction 

 Feed efficiency (FE) of a beef animal is critical to producer profitability, but often varies 
considerably among individuals. Improvements in efficiency of beef production are necessary to 
sustain the cattle industry. The purpose of this research was to assess the repeatability of FE 
across growing and finishing phases of feedlot production as well across differing diet types. 
Additionally, we sought to better understand the contributions of diet digestibility to the FE 
phenotype of cattle.   

Experimental design and methodology  

 Animal use and methods are extensively described by Russell et al. (2016a). Briefly, this 
study was conducted over 5 years and utilized 985 crossbred steers (464 ± 32 kg initial BW) fed 
in 6 replicated groups. Steers were fed at the University of Missouri (MU) for the growing phase 
and at Iowa State University (ISU) for the finishing phase. Steers were received at MU for a 
minimum of 21 d prior to initiation of the growing phase portion of the trial. Steers were 
stratified by BW across growing phase diets including: a whole shell corn-based diet (G-Corn; 
528 steers in total; Table 1) or a roughage-based diet (G-Rough; 457 steers; Table 2). Steers were 
housed in pens with GrowSafe equipped bunks and fed to ad libitum intake. Intermediate BW 
were recorded every 14 to 28 d and at the conclusion of the growing phase, which ranged in 
length from 69 to 89 d across the 6 groups. Residual feed intake (RFI) was calculated for steers 
within growing phase diet as suggested by Basarab et al. (2003) and all steers where shipped to 
ISU for finishing. At ISU steers were assigned to finishing pens (5 to 6 steers per pen) by 
growing phase diet and RFI ranking (upper, middle, or lower one-third of the group). Steers 
received diets nutritionally similar to their growing phase diets after arrival at ISU and were then 
transitioned to finishing diets that included: a dry rolled corn based diet (F-Corn; Table 3) or a 
byproduct-based diet (F-Byp). Steers received finishing diets until cattle were visually appraised 
to have 0.5 in of backfat, and were harvested at Tyson Fresh Meats (Denison, IA). All steers 
received ractopamine hydrochloride at a rate of 200 mg/hd per d for 27-32 d prior to harvest.  
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 Following completion of the sixth and final group, data from all 985 steers (168 ISU 
finishing pens total) were collectively assessed. Average growing phase G:F was calculated for 
each set of steers (5 to 6 head) assigned to a finishing phase pen, and growing phase initial BW 
was used as a covariate in analysis with the Mixed procedure of SAS to calculate an adjusted 
growing phase G:F for a pen of cattle. Pens were then classified as highly (HFE; > 0.5 SD from 
the G:F mean; most efficient cattle), mid (MFE; ± 0.5 SD from the G:F mean), or lowly (LFE; < 
0.5 SD from the G:F mean; least efficient cattle) feed efficient. Descriptive statistics about the 
pens of steers classified in these groupings are shown in Table 4. Data were analyzed using Proc 
Mixed of SAS, with finishing phase pen as the experimental unit and the model included the 
fixed effects of growing phase diet, growing phase feed efficiency classification, finishing phase 
diet and the interactions. Group (1 through 6) was included as a fixed effect as well. Finishing 
phase starting BW was used as a covariate in the model for finishing phase final BW, DMI, G:F, 
and HCW.  

 In groups 4 and 5 a subset of steers were utilized to assess the impact of FE phenotype on 
diet digestibility (methods described by Russell et al., 2016b). Upon arrival at ISU, following 
completion of the MU growing phase RFI determination, the 12 greatest and 12 least feed 
efficient steers from each of the two growing phase diets were selected from group 4 (n = 48, 
509 ± 7 kg) and group 5 (n = 48, 467 ± 7 kg). Steers were housed in pens of 6 head, in pens 
equipped with GrowSafe bunks. Steers received diets nutritionally similar to their growing diets 
for 15 d, during which time titanium dioxide was included in the diets at an average of 10 g per 
head daily as an indigestible marker to estimate fecal output. Grab samples of feces were 
collected prior to feeding on d 14 and 15, and samples of total mixed rations were collected twice 
during the receiving period. Steers were then transitioned to finishing diets over a period of 18 d 
and finishing period diet digestibility was assessed by repeating the titanium dioxide feeding 
protocol immediately prior to addition of ractopamine hydrochloride, with fecal collections 
occurring on d 28, 29 (group 4) or d 68, 69 (group 5).  Feces and diets were analyzed for DM, 
organic matter, neutral detergent fiber, acid detergent fiber, N, fat, and starch.  

 Data for the two groups (96 steers in total) were pooled, and steers were ranked by their 
growing phase G:F to be classified as the 24 greatest (HFE) or 24 least (LFE) feed efficient 
steers from each growing phase diet. Digestibility data were analyzed using Proc Mixed of SAS, 
with the receiving period model including the fixed effects of growing phase diet and growing 
phase FE classification and the interaction. Finishing period data were analyzed with the fixed 
effects of growing phase diet, growing phase FE classification, finishing phase diet and the 
interactions. Group (4 or 5) was included in the model as a fixed effect for both phases.  

Repeatability of feed efficiency across feeding phases and different diet types 

 The greatest challenge facing beef producers seeking to measure FE is the ability to 
measure individual intakes. Measuring intakes in the feedlot requires substantial infrastructure, 
making intake measurements difficult and expensive (Arthur and Herd, 2008). Thus, measuring 
FE for a limited period would be beneficial if FE is repeatable over multiple feeding phases or 
can be predicted using one FE evaluation period. In the present study there were no growing 
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phase diet × FE classification × finishing phase diet effects on finishing phase growth or carcass 
traits (Table 5).  

Feed efficiency classification impacted marbling score of carcasses, where marbling score was 
lesser in the HFE steers (417 ± 5.6) than the MFE (433 ± 4.3) and LFE (439 ± 5.1) steers, while 
marbling score did not differ between MFE and LFE steers. There was no affect of the growing 
phase diet × finishing phase diet interaction or the growing phase diet × FE classification 
interaction on finishing phase G:F. However, finishing phase feed efficiency was impacted by 
growing phase FE classification (Fig. 1), where cattle classified as highly efficient in the growing 
phase had the best G:F in the finishing period and mid and lowly feed efficient cattle were 
similarly mid and least feed efficient in the finishing period. Table 6 shows the percent of pens of 
steers that remained in the same FE classification across both growing and finishing phases, 
moved one classification (i.e. low to mid, mid to high, etc), or moved two classifications (i.e. low 
to high or high to low). In general the trends are similar across diet combinations, though it 
appears cattle classified by FE while grown on roughage displayed more movement across 
classifications than cattle grown on corn, likely because of the similar nutritional profile between 
the G-Corn and finishing diets. Assessment of the correlation between adjusted growing phase 
G:F and finishing phase G:F amongst the differing diet combinations is shown in Table 6. The 
relationship was positive across all diet combinations and was significant for three of the four 
combinations, being strongest within cattle grown on corn, likely due to the similar nutritive 
profile between G-Corn and the finishing diets. The relationship was weakest within cattle grown 
on roughage and finished on byproduct-based diets but still reflects a positive correlation. The 
most variability in repeatability of FE across growing and finishing phases appears to be within 
steers fed fibrous diets and more work is needed to better understand the implication of NDF 
content and quality on FE determination.  

Others have also examined the repeatability of FE over multiple feeding phases. Over three 
years, Durunna et al. (2011) collected growth and intake data on 490 crossbred steers during two 
consecutive feeding phases (growing and finishing). Within each year, steers either received the 
growing phase diet (74% oats, 20% grass hay) in both phases, the finishing phase diet (56.7% 
barley, 28.3% oats) in both phases or switched from the growing to finishing phase diet across 
the two periods (Durunna et al., 2011). Steers were classified as low, medium, or highly feed 
efficient using a 0.5 SD cutoff around the mean for G:F based on first period performance 
(Durunna et al., 2011). In the feed swap group, 61.6% switched G:F classification; however, 
similar classification changes were also observed in the all growing phase diet-fed group (G:F: 
53.5% change) and the all finishing phase diet-fed group (G:F: 59.1% change; Durunna et al., 
2011). Despite a seemingly large movement across classifications, Durunna et al. (2011) 
reported a far smaller proportion of the total feeding groups that actually moved two 
classifications (i.e. the low to high, or high to low FE classification; feed swap: 13.3% G:F; 
growing diet-fed: 11.2% G:F; finishing diet-fed: 11.2% G:F).   

 An interesting observation from the present study is that there was no interaction between 
MU growing diets and finishing period G:F, feed efficiency was achieved in different ways 
between cattle fed the two growing diets. Among those grown on corn HFE and MFE cattle ate 
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less DM during the finishing period than those classified as LFE, while daily rates of gain were 
similar among the classification groupings. However, among steers grown on roughage, HFE 
and MFE steers had greater daily rates of gain than LFE steers while consuming similar amounts 
of DM across all three groupings. Differences in diet digestibility may help explain differences 
among individuals in feed efficiency, depending on the nutrient profile of the diet.  

Diet digestibility in beef cattle identified as phenotypic extremes for feed efficiency 

Table 7 shows descriptive statistics regarding steers utilized in diet digestibility assessments. 
Receiving phase diets were nutritionally similar to growing phase diets and diet digestibility data 
are shown in Table 8. Minimal differences between cattle grown on corn and classified as LFE 
and HFE were observed in digestibility of DM, organic matter, NDF, ADF, CP or starch. 
However, within steers grown on roughage-based diets, HFE steers excelled at fiber digestion 
over LFE steers, suggesting ability to digest fibrous diets more completely may have contributed 
to classification of these steers as highly feed efficient. Diet selectivity and eating behavior was 
not assessed in these trials and these factors may play important roles in identification of cattle as 
highly feed efficient on fibrous diets.  There were no effects of growing phase FE classification 
on finishing phase diet digestibility (data not shown).  

There was a positive correlation for DM digestibility between feeding phases when steers were 
grown and finished on similar diets, specifically the roughage-grown byproduct-finished steers 
and the corn-grown corn-finished steers (Table 9). Although there were no differences in DM 
digestibility due to FE classification, it does appear that digestibility measured during one 
feeding phase may help predict digestive capacity during a subsequent phase if similar diet types 
are fed. Interestingly, fiber digestibility appeared to contribute to FE variation while starch 
digestibility did not, indicating that there may be more opportunity for improving FE via 
selection or management for better fiber utilization. Feed efficiency classification effects were 
most pronounced for growing phase fiber digestibility advantages in the roughage-grown HFE 
steers. More work is needed to understand the mechanisms by which cattle make most efficient 
use of fibrous diets.  

Summary  

Completion of five years of work regarding repeatability of feed efficiency of cattle across 
growing and finishing phases and different diet types (corn or roughage) has increased our 
knowledge of feed efficiency. Steers classified as highly feed efficient (HFE) based on growing 
phase G:F maintained greater G:F in the finishing phase, a relationship that was also congruent 
for mid (MFE) and low (LFE) feed efficient steers. Thus, growing phase FE appeared to be a 
reasonable predictor of finishing phase FE. Perhaps the most interesting revelation was that 
although finishing phase G:F was not directly affected by growing or finishing phase diets, an 
evaluation of other growth traits revealed differences in how G:F differences resulted from 
underlying sources of variation. Among steers grown on roughage, finishing phase ADG differed 
between FE classifications yet DMI was unaffected by FE classification. Dissimilarly, among the 
corn-grown steers there were no differences detected in finishing phase ADG between FE 
classifications but DMI differed between classifications. Thus, it appeared that ADG differences 
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were responsible for finishing phase G:F variation among roughage-grown steers whereas 
differences in finishing phase G:F among the corn-grown steers resulted from differences in 
DMI. Though growth performance was affected by growing phase diet and FE classification, 
carcass differences were limited. There were limited differences among corn-grown steers or 
corn-finished steers; hence, diet-driven differences were largely isolated to steers fed the high 
fiber diets.  

Examining the relationship between FE across multiple growth phases and diet types is 
important for determining means by which to select and manage cattle based on FE phenotype.  

Ultimately, FE was repeatable across feeding phases but growing phase FE may be a better 
predictor of subsequent FE when diet types between feeding phases are similar. Though starch 
digestibility had no relationship with FE, fiber digestibility contributes to FE variation between 
individuals. Future research should evaluate cattle performance using multiple growing and 
finishing phase diet combinations but may consider particularly focusing on high fiber diets as 
roughage-grown steers were the predominant source of variation in the present studies. 
Understanding the digestive differences between highly and lowly feed efficient steers may be 
best accomplished by exploring differences in microbial populations/activities.  

The ultimate goal of this research is to advance improvement in the beef industry through 
development of tools and management strategies for producers. Suggested application of our 
research findings might eventually include testing cattle at weaning to determine their genetic 
predisposition to be superior fiber digesters, sending those cattle to backgrounding systems to 
make the most efficient use of low quality, affordable, fibrous feedstuffs while sending the 
poorer fiber digesters directly to the feedlot to become calf feds. More work is needed before we 
reach this goal, but ultimately, efficiency of beef cattle production and overall sustainability of 
the industry can be improved if we understand both the genetic potential and nutritional 
management required to optimize the cattle feed efficiency. 
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Table 1. Composition and analysis of growing phase whole shell corn-based diets (G-Corn) fed 
to steers (From Russell et al., 2016a)  
 Group1 

Ingredient, % DM 1, 2, 3 4 5 6 

Whole shell corn 78.59 70.92 65.10 64.26 
Dried distillers grains 9.72 17.00 24.50 26.07 
Soyplus2 6.25 6.38 4.51 4.96 
Wheat middlings 2.65 2.00 - - 
Porcine blood meal - 1.30 3.50 2.52 
Limestone 1.50 1.40 1.21 1.09 
Urea 0.39 0.60 0.47 0.19 
Choice white grease 0.20 0.12 0.10 0.19 
Salt 0.17 0.04 0.13 0.22 
Vitamin premix3 0.17 0.16 0.25 0.23 
Trace mineral premix4 0.17 0.07 0.09 - 
Potassium chloride 0.17 - - - 
Pellet binder - - 0.13 0.19 
Rumensin 905 0.01 0.01 0.01 0.01 

Nutritional analysis6     
DM, % as-fed basis 90.7 90.3 88.3 85.1 
NDF, % DM 17.8 20.2 21.1 26.4 
ADF, % DM 4.4 5.0 4.9 6.5 
CP, % DM 17.2 17.9 23.1 20.5 

1 Steers fed in 6 separate, replicated groups. 
2 Soyplus (West Central Cooperative, Ralston, IA). 
3 Vitamin premix fulfills 2,200 IU vitamin A, 275 IU vitamin D, 100 IU vitamin E per kg of 
diet. 
4 Trace mineral premix fulfills 10 mg Cu, 50 mg Fe, 20 mg Mn, 30 mg Zn, 0.1 mg Co, 0.1 mg 
Se, 0.5 mg I per kg diet. 
5 Provided Monensin at 150 mg·steer-1·d-1, Elanco Animal Health, Indianapolis, IN. 
6 Determined from analysis of total mixed ration samples collected weekly and composited by 
month. 
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Table 2. Composition and analysis of growing phase forage and soybean hull-based diets (G-
Rough) fed to steers (From Russell et al., 2016a) 
 Group1 

Ingredient, % DM 1, 3 4 5 6 

Soybean hull pellets 40.81 36.57 38.16 36.84 
Alfalfa/grass baleage 34.21 - - - 
Corn Silage - 36.00 - - 
Rye baleage - - 32.49 - 
Sudan baleage - - - 36.25 
Dried distillers grains 15.13 15.00 22.24 22.70 
Soyplus2 - 5.50 4.05 1.75 
Porcine blood meal - 0.80 2.02 1.65 
Ground corn 8.62 5.00 - - 
Limestone 0.57 0.70 0.61 0.35 
Salt 0.25 0.07 0.11 0.18 
Vitamin premix3 0.20 0.20 0.20 0.18 
Trace mineral premix4 0.20 0.13 0.07 0.07 
MFP5 - 0.03 0.05 0.03 
Rumensin 906 0.01 0.01 0.01 0.01 

Nutritional analysis7     
DM, % as-fed basis 79.4 68.9 68.3 66.8 
NDF, % DM 50.1 46.9 52.3 57.5 
ADF, % DM 32.5 26.5 29.0 31.5 
CP, % DM 17.2 16.0 22.3 20.8 

1 Steers fed in 6 separate, replicated groups; forage and soybean hull-based diet was not fed 
during group 2. 
2 Soyplus (West Central Cooperative, Ralston, IA). 
3 Vitamin premix fulfills 2,200 IU vitamin A, 275 IU vitamin D, 100 IU vitamin E per kg of 
diet. 
4 Trace mineral premix fulfills 10 mg Cu, 50 mg Fe, 20 mg Mn, 30 mg Zn, 0.1 mg Co, 0.1 mg 
Se, 0.5 mg I per kg diet. 
5 DL-methionine hydroxy analogue calcium (84 % methionine, Novus International, Saint 
Charles, MO). 
6 Provided Monensin at 150 mg·steer-1·d-1, Elanco Animal Health, Indianapolis, IN. 
7 Determined from analysis of total mixed ration samples collected weekly and composited by 
month. 
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Table 3. Composition and analysis of finishing phase diets fed to steers1 (From Russell et al., 
2016a) 
 Finishing phase diets2 

Ingredient, % DM F-Corn F-Byp 

Cracked corn 75 30 
Dried distillers grains 14.99 39.99 
Soybean hull pellets - 20 
Bromegrass hay 8 8 
Limestone 1.54 1.54 
Salt 0.31 0.31 
Vitamin A premix3 0.11 0.11 
Trace mineral premix4 0.035 0.035 
Rumensin 905 0.013 0.013 

Nutritional analysis6   
DM, % as-fed basis 84.5 84.1 
NDF, % DM 24.4 42.7 
ADF, % DM 8.0 18.7 
CP, % DM 11.2 18.4 

1 Steers were fed in 6 separate, replicated groups; ingredient composition of finishing phase 
diets was consistent across all 6 groups. 
2 Finishing phase diets: F-Corn = cracked corn-based; F-Byp = dried distillers grains and 
soybean hull-based. 
3 Vitamin A premix contained 4,400,000 IU/kg. 
4 Provided per kilogram of diet (from inorganic sources): 30 mg Zn, 20 mg Mn, 0.5 mg I, 0.1 
mg Se, 10 mg Cu, 0.1 mg Co. 
5 Provided Monensin at 200 mg·steer-1·d-1, Elanco Animal Health, Indianapolis, IN. 
6 Determined from analysis of total mixed ration samples collected weekly and composited by 
month.  
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Table 4. Descriptive statistics of growing phase feed efficiency classifications calculated for 
finishing phase pens across all groups (From Russell et al., 2016a) 
 Growing phase diets1 

  G-Corn   G-Rough  

 Growing phase feed efficiency classifications2 

 HFE MFE LFE HFE MFE LFE 

Pens (n) 24 41 25 20 34 24 
G:F3       

Average 0.258 0.218 0.180 0.228 0.196 0.169 
Minimum 0.235 0.203 0.141 0.211 0.185 0.144 
Maximum 0.298 0.233 0.202 0.262 0.208 0.183 

1 Growing phase diets: G-Corn = whole shell corn-based; G-Rough = forage and soybean hull-
based.  
2 Growing phase feed efficiency classifications: HFE = highly feed efficient (> 0.5 SD from 
the G:F mean); MFE = mid feed efficiency (± 0.5 SD from the G:F mean); LFE = lowly feed 
efficient (< 0.5 SD from the G:F mean). 
3 Growing phase G:F for each finishing phase pen calculated using individual BW and DMI 
data for each steer housed in a finishing phase pen, and utilizing growing phase initial BW as a 
covariate in the MIXED procedure of SAS 9.3 (SAS Institute Inc., Cary, NC). 
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Table 5. Effect of growing phase diet and feed efficiency classification on finishing phase growth performance and carcass 
traits (From Russell et al., 2016a) 
 Growing phase diets1   

 G-Corn G-Rough   

 Growing phase feed efficiency classifications2   

 LFE MFE HFE LFE MFE HFE SEM P-value3,4 

Live performance         
Initial BW5, kg 448 457 459 460 462 475 - - 
Final BW 6, 7, kg 615ab 609bc 605c 605c 612ab 618a 2.6 0.001 
ADG, kg/d 1.85ab 1.79bc 1.78bc 1.72c 1.82ab 1.87a 0.029 0.005 
DMI7, kg/d 11.3a 10.7bc 10.6c 11.0ab 11.1a 11.2a 0.12 0.002 

Carcass traits         
HCW7, kg 389a 386a 381b 385ab 387a 390a 1.9 0.003 
REA8, cm2 86.6c 89.6b 87.9bc 87.9bc 89.1b 91.7a 0.78 0.01 

a, b, c Least squares means in a row without common superscript differ (P < 0.05).  
1 Growing phase diets: G-Corn = whole shell corn-based; G-Rough = forage and soybean hull-based.  
2 Growing phase feed efficiency classifications: HFE = highly feed efficient (> 0.5 SD from the G:F mean); MFE = mid feed 
efficiency (± 0.5 SD from the G:F mean); LFE = lowly feed efficient (< 0.5 SD from the G:F mean). 
3 Interaction effect of growing phase diet and feed efficiency classification. 
4 Growing phase diet × feed efficiency classification interaction was not significant (P ≥ 0.14) for G:F, dressing percent, 
backfat, KPH, yield grade, or marbling score; Three way interaction between growing phase diet, finishing phase diet, and 
growing phase feed efficiency classification was not significant (P > 0.2).  
5 Initial BW pencil shrunk 4 %. 
6 Final BW, pencil shrunk 4 %. 
7 Initial BW applied as a covariate. 
8 Ribeye area. 
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Table 6. Effect of growing phase and finishing phase diets on feed efficiency classification shifts by steers and the correlation between 
growing phase and finishing phase G:F. 

  Percent of pens changing feed efficiency classifications from 
growing to finishing 

Correlation of G:F between phases1 

Item Pens (n)  No change One 
classification 

Two 
classifications 

r (P-value) 

G-Corn  90 51.1% 41.1% 7.8%  
  F-corn  45 48.9% 40.0% 11.1% 0.47 (0.001) 
  F-Byp 45 53.3% 42.2% 4.4% 0.40 (0.007) 
G-Rough 78 41.0% 42.3% 16.7%  
  F-Corn 39 43.6% 43.6% 12.8% 0.37 (0.02) 
  F-Byp 39 38.5% 41.0% 20.5% 0.29 (0.08) 
Overall  168 46.4% 41.7% 11.9%  
1Pearson’s	correlation	(r)	and	associated	P-value	for	the	relationship	between	adjusted	growing	phase	G:F	and	finishing	phase	G:F.		
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Table 7. Descriptive statistics of growing phase growth performance for steers fed corn or 
roughage-based diets and classified as least or most feed efficient and utilized in diet 
digestibility assessments (Groups 4 and 5)1 (From Russell et al., 2016b) 
 Diet2 

 G-Corn G-Rough 

 FE Classification3 
Item LFE HFE LFE HFE 

Steers, n 24 24 24 24 
Initial BW, kg 308.9 279.0 309.1 282.3 
Final BW, kg 432.6 415.8 439.7 428.7 
ADG, kg/d 1.75 1.90 1.89 1.98 
DMI, kg 9.72 7.14 10.28 8.87 
G:F 0.181 0.269 0.186 0.228 
 Minimum 0.102 0.208 0.087 0.178 
 Maximum 0.198 0.315 0.176 0.302 

1 Pooled values from steers selected as most and least feed efficient from each of two diets fed 
in two separate groups (48 selected steers/group: 24 steers/diet, 12 steers/FE classification 
within diet).  
2 Growing phase diets: G-Corn = whole shell corn-based; G-Rough = forage and soybean hull-
based. 
3 Growing phase feed efficiency classifications: LFE = least feed efficient, poorest G:F; HFE = 
most feed efficient, greatest G:F.  
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Table 8. Receiving phase digestibility as affected by growing phase feed efficiency classification and growing phase 
diets (From Russell et al., 2016b). 

 Growing phase diets1  P-values3 

 G-Corn G-Rough   

 Growing phase feed efficiency classification2     
Item LFE HFE LFE HFE SEM Diet FE Diet×FE 

Steers, n 24 24 24 24 - - - - 
DMI4, kg 8.9 8.6 10.0 10.0 0.37 <0.001 0.71 0.79 

Digestibility, %         
DM 66.9 66.7 66.0 70.3 2.61 0.56 0.51 0.35 
OM 68.9 68.4 68.2 72.8 2.58 0.42 0.51 0.31 
NDF 58.1b 57.1b 59.2b 73.0a 3.03 0.003 0.08 0.01 
ADF 46.8 46.6 60.2 69.4 3.84 <0.001 0.34 0.20 
CP 59.4 56.9 61.3 64.5 2.81 0.06 0.92 0.30 
Starch 87.4 87.9 90.0 91.1 2.47 0.20 0.80 0.89 

a, b Least squares means in a row without common superscript differ (P < 0.05).  
1 Growing phase diets: G-Corn = whole shell corn-based; G-Rough = forage and soybean hull-based.  
2 Growing phase feed efficiency classifications: LFE = least feed efficient, poorest G:F; HFE = most feed efficient, 
greatest G:F. 
3 P-values: Diet = main effect of growing phase diet; FE = main effect of growing phase feed efficiency 
classification; Diet×FE = interaction effect of growing phase diet and feed efficiency classification. 
4 Titanium dioxide supplementation period DMI, average of final 10 d prior to fecal collection.  
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Table 9. Dry matter digestibility correlations across growing and finishing phase 
diets. 
  Dry matter digestibility1 

Growing phase diet2 Finishing phase diet3 Corr4 P-value 
Corn Corn 0.49 0.02 
Corn Byproduct 0.25 0.3 
Roughage Corn 0.21 0.4 
Roughage Byproduct 0.68 <0.001 
1 Dry matter digestibility correlations based on receiving phase and finishing phase 
diet digestibilities; receiving phase diets nutritionally similar to growing phase 
diets 
2 Growing phase diets: whole shell corn-based (Corn), forage and soybean hull-
based (Roughage) 
3 Finishing phase diets: cracked corn-based (Corn), dried distillers grains and 
soybean hull-based (Byproduct) 
4 Corr: r, Pearson’s correlation coefficient 
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Figure 1. Finishing phase G:F in steers due to growing phase feed efficiency classification: HFE 
= highly feed efficient (> 0.5 SD from the growing phase G:F mean; n = 44 pens); MFE = mid 
feed efficiency (± 0.5 SD from the growing phase G:F mean; n = 75 pens); LFE = lowly feed 
efficient (< 0.5 SD from the growing phase G:F mean; n = 49 pens). Finishing phase initial BW 
applied as covariate. Values are means ± 0.0015, SEM. Means without common superscript 
differ (P ≤ 0.05). From Russell et al. (2016a). 	
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Introduction 

 Individual animal feed efficiency plays a key role in the profitability and sustainability of the US 
beef industry. During the growing and finishing phase of production, a 10% improvement in feed 
efficiency has a two-fold greater impact on profit than a 10% increase in rate of gain (Fox et al., 2001). 
The traits that beef producers routinely record are outputs which determine the value of product sold and 
not the inputs defining the cost of beef production. The inability to routinely measure feed intake and feed 
efficiency on large numbers of cattle has precluded the efficient application of selection despite moderate 
heritabilities (h2 = 0.16-0.46; Archer et al., 1999). Feed costs in calf feeding and yearling finishing systems 
account for approximately 66% and 77% of costs, respectively (Anderson et al., 2005).Feed costs account 
for approximately 65% of total beef production costs. Of the metabolizable energy required from 
conception to consumption of a beef animal, 72% is utilized during the cow-calf segment of production 
while 28% of calories are utilized in the calf growing and finishing phases of production (Ferrell and 
Jenkins, 1982). Of the calories consumed in the cow-calf segment, more than half are used for maintenance 
which presents a large selection target. 

 A very large potential cost savings to the US beef cattle industry could be realized with selection 
for feed efficiency. Cattle selected for residual feed intake (RFI) with the same ADG eat less feed thus 
saving feedlot operators money. Assuming 27 million cattle are fed per year and that 34% of cattle in the 
feedlot are calves and 66% are yearlings, the beef industry could save over 1 billion dollars annually by 
reducing daily feed intake by just 0.91 kg. per animal (Weaber, 2012). 

 The emergence of individual feed intake monitoring systems has increased the availability of data 
for the genetic evaluation. The deployment of feed efficiency related genetic prediction tools may enable 
cattle producers to make better selection to improve profitability (Arthur et al., 2004; Hill et al., 2005). 
The cost and small number of records has slowed deployment of selection tools. At present, only the Am. 
Angus Assn. publishes a feed efficiency related EPD and only 8% of young sire candidates have the EPD 
(Am. Angus Assn., 2014). Little research has been conducted to understand the social aspects or barriers 
to adoption of feed efficiency technology by beef producers on a national scale. One such study (Wulfhorst 
et al., 2010) focused on the specific willingness of seedstock producers to begin collection of records for 
computation of RFI and willingness of commercial producers to select bulls based on RFI. 

 The objective of this study was to assess the awareness, attitudes and knowledge of US commercial 
cow-calf producers regarding a variety of feed efficiency and genetics concepts. This work was undertaken 
as a portion of the outreach component of the USDA funded integrated research project (USDA-NIFA-
AFRI grant number: 2011-68004-30214) entitled the National Program for the Genetic Improvement of 
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Feed Efficiency in Beef Cattle. Results from the social survey will be used to refine the project’s 
nationwide producer education program. 

Data Collection and Analysis 

 Social Survey. The survey instrument, sampling frame and data entry were conducted under 
contract with the USDA National Agricultural Statistics Services (USDA-NASS). The sampling frame 
for the stratified random sample was derived from USDA-NASS lists and all beef, seed stock, cow/calf, 
stocker, and feedlot operations from the continental US. The total sample size was 7,500 and was stratified 
across seven US regions to proportionally represent the number of beef producers in those regions. 

 The 55 question survey was mailed September 18, 2013 and a second mailing occurred on October 
23, 2013. Each mailing included an explanatory letter, the paper survey instrument and a return envelope. 
Data from returned surveys were entered into a database by USDA-NASS employees and a data set 
including strata, anonymous responses and weightings was delivered to researchers at Kansas State 
University. 

 Descriptive statistics including estimates of weighted frequencies and respective standard errors 
were generated using the SURVEYFREQ procedure and means were estimated via the SURVEYMEANS 
procedure (SAS Institute, Inc., Cary, NC). Respondents in each stratum (region) had unequal but known 
probabilities of inclusion in the sample due to the stratified sample design. Within stratum, each 
respondent had the same probability of inclusion. Unequal probabilities of inclusion in the sample were 
accounted for in the weighting of the frequencies. Results presented here are weighted frequencies or 
means. 

Summary of Results and Discussion 

 A total of 868 (11.6%) respondents returned surveys. Of those, 401 (5.3%) were eliminated from 
further consideration as these were deemed ineligible for analysis because the respondents indicated that 
they were not at the time of survey an owner, manager or worker on a beef cattle operation. The remaining 
responses from 467 surveys were used in this analysis. Response to any given question varied among these 
467 due to item nonresponse. 

 Of the 467 respondents a majority (59.9%) were commercial cow-calf producers while 11.5% were 
seedstock, 12.0% were seedstock and commercial cow-calf producers, 13.3% were stocker operators and 
3.2% were feedlot operators. The scope of the analysis reported here was limited exclusively to the 269 
commercial cow-calf respondents of which 93.0% indicated they were owners, 5.1% were managers and 
1.8% indicated other specific involvement in beef operation (managing partner, office manager, etc.). On 
average, the commercial producer respondents, planned to breed 83.1 ± 6.7 head of cows and heifers in 
2013, on average used artificial insemination to breed 3.7 ± 1.1 percent of their herd, spent approximately 
US$1,887 ± 102 to purchase each herd bull on inventory, and had a mean age of 57.4 ± 1.9 yr. with 33.2 
± 1.6 yr. of beef industry experience.  

 The highest level of education varied among commercial producer respondents with 38.3% 4 year 
college graduates or beyond, 23.3% with some college coursework, 27.3% high school graduates, 5.0% 
less than high school diploma and 6.3% not responding. Of the commercial producers responding, 47.1% 
indicated that 50% or more of their work-time was on a farm or ranch, while 43.3% spent a majority of 
their occupational work-time off farm. Commercial producers reported that on average 29.9 ± 2.2 % of 
their family’s income was from their beef operation.  
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 Unpaid consultants, such as neighbors or friends, were most frequently (38.9%) identified by 
respondents as valuable sources of breeding and genetics information followed by veterinarians (29.7%) 
extension professionals (29.5%), seedstock producers (27.7%), internet search (18.9%), farm supply or 
feed store staff (18.1%), breed association personnel (14.7%), AI stud personnel (11.7%), popular press 
sources (9.3%) and paid consultants (2.1%). These results suggest that it is important to educate not only 
traditional information providers (veterinarians and extension educators) but also commercial producer 
peers and their seedstock suppliers about genetic and breeding principles as these entities are often 
consulted. 

 When questioned about decision making processes used in the business, commercial producers 
indicated that profitability was the greatest concern (73.8%) and 24.2% identified themselves as an ‘early 
adopter’ of new technology. A large majority (77.0%) of producers responded that they tend to let new 
ideas prove themselves before adoption with 87% considering their current management and selection 
system to be sustainable. Producers obtain new knowledge by accessing a variety of media and 
programs/meetings (55.4%), relying on extension educators to teach them about new techniques (40.1%) 
and rely on seedstock producers and breed associations to provide new information on breeding and 
selection practices (39.8%). 

 Feed efficiency concepts. Commercial cow-calf producers struggled to correctly identify 
definitions of basic feed efficiency measures with 32.6% choosing the correct definition for feed-to-gain 
ratio and 36.2% correctly defining feed efficiency. Only 16.4% of producers had heard the terms residual 
or net feed intake (RFI or RFI) and only 14.3% of producers were familiar with residual average daily 
gain (RADG). A majority (54.8%) of producers identified the genetic improvement of rate of gain as the 
mechanism used in the beef industry to improve feed efficiency while improved diet formation was 
identified by 40.6%, feed additives such as ionophores or beta-agonists by 28.4%, growth promoting 
implants by 35.2% and 24.2% did not know if any of the options were used. Nearly one-half of producers 
did not know the consequence of selection for increased average daily gain on the cowherd (decreased 
body fat and increased mature weight), while 13.4% suggested no harmful effects and only 10.3% 
correctly answered the question.  

 Producers responded that they were not knowledgeable of methods to select for improved feed 
efficiency (41.2%) with 28.8% responding slightly knowledgeable, 20.2% somewhat knowledgeable, 
7.0% very knowledgeable and 1.5% extremely knowledgeable. 

 When asked about the largest obstacle to genetic improvement of feed efficiency in beef cattle 
11.9% identified a lack of available facilities and equipment to measure individual intakes, 9.7% identified 
a lack of uniform guidelines, 8.3% suggested there were no obstacles, 8.0% identified a lack of demand 
from bull buyers for feed efficiency tested bulls, and 7.1% said it was too expensive to collect individual 
feed intake records.  

 Most producers (81.8%) responding to the survey had no awareness of the research project that 
was undertaking the survey with 9.6% having awareness and 8.9% nonresponse. 

Genetic concepts. Survey respondents were asked a range of questions to gauge their knowledge and 
understanding of some basic genetic concepts and attitudes towards new selection tools. Questions were 
posed to more fully understand producer’s utilization of current selection technologies in their operations. 
Producers were also asked to identify current selection behaviors and the future directions that they may 
pursue.  

92



 Producers use a wide range of information for making selection decisions and plan to use different 
information for selection decisions in the future as reported in Table 1. Despite much work by industry 
and extension educators, commercial producers still use data sources that are not corrected for 
environmental effects. 

 Commercial cow-calf producers currently lack a basic understanding of new genomic based 
selection tools and their anticipated benefit to beef cattle selection systems. A majority of producers (62%) 
responded that they did not know what class of traits should benefit the most from marker assisted 
selection. Only 13.1% responded correctly that this class includes traits which are difficult and/or 
expensive to measure and that have significant costs or returns associated with them. More than two-thirds 
of producers could not identify what was the primary benefit of adding molecular breeding value data to 
EPD calculations. Only 20.8% cited increase in EPD accuracy as the correct answer. Nearly 70% of cow-
calf producers responded that they didn’t know how much variation DNA markers explain in a trait. 

 When asked to summarize which traits were important in their selection objective over the past 
five years, a large majority (81.4%) of producers identified calving ease/birth weight, followed by 
reproduction (65.2%), growth traits (64.3%), temperament (63.3%), milk (51.5%), lifetime productivity 
(36.0%), maintenance efficiency (31.5%), and feed efficiency (30.3%). During the coming five years, 
producers identified calving ease/birth weight (69.3%), growth traits (66.1%), reproduction (65.8%), 
temperament (58.5%), milk (47.5%), lifetime productivity (42.4%), feed efficiency (36.7%), and 
maintenance efficiency (31.1%). 

 Average daily gain was most frequently identified (41.7%) by commercial producers as the 
selection criterion that they use to improve feed efficiency. Interestingly, mature weight and cow body 
condition score were the next most frequently indicated at approximately 27% of respondents. Less than 
4% of respondents used maintenance energy EPD, residual average daily gain EPD, or selection indexes 
that use feed intake predictions. 

 Producers were asked how much more they would be willing to pay for a bull if a reliable method 
of evaluation were available to document its genetic merit for feed efficiency. Most frequently (23%) 
producers indicated that they would not pay any more for a bull with a reliable genetic prediction for feed 
efficiency, while 13.6% indicated they would increase their purchase price by more than US$500, 11.8% 
indicated an increase of US$201-$300 and 10.5% would increase their bid by US$101-$200. 

Conclusion 

 Although no direct price signal exists in the beef value chain for feeder cattle of different genetic 
potentials for feed efficiency, cow-calf and feedlot producers may obtain increased profits through 
reduced feed cost per unit output through selection for efficiency and growth rate. Results of this social 
survey suggest that commercial cow-calf beef producers in the US are not well versed in the basic concepts 
of feed efficiency or of the available methods to improve feed efficiency. Additional educational work 
must be done to aid producers in understanding the appropriate methods and tools for selection to improve 
feed efficiency.  

 
Adapted from: Weaber, R.L. et al. Proceedings, 10th World Congress on Genetics Applied to Livestock Production 
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Table 1. Frequency of use (SE) for various types of genetic prediction information used by beef producers during past 
five years and their anticipated future use.1 

Data type Use past 5 
years2 

Anticipated 
future use2 

Actual measurements 18.4 (3.0) 6.7 (1.8) 
Ratios 21.6 (4.0) 13.8 (3.3) 
Expected Progeny Differences 29.9 (4.4) 12.4 (3.4) 
Genomically Enhanced EPD 5.6 (2.2) 12.6 (3.0) 
Productivity of relatives 16.4 (3.5) 14.3 (3.7) 
Comments by seller 17.6 (3.8) 11.4 (3.0) 
DNA marker results 2.8 (1.5) 15.4 (3.1) 
None of above 31.0 (4.9) 42.5 (5.1) 

1Respondents could select more than one type of information used; column totals will not sum to 100%. 
2Percentage of respondents indicating use or anticipated use followed by standard error of measurement. 
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Extension demonstration project outcomes: Industry adoption and translation of 
project deliverables 

 
Matt Spangler, Ph.D., Associate Professor, University of Nebraska-Lincoln 

 
 Unfortunately, the amount of feed intake data available to U.S. beef breed 
associations is spars compared to the amount of data available for growth traits.  This makes 
traditional pedigree-based genetic evaluation for feed intake or efficiency challenging.  
However, progress in this trait complex could be made as we know that dry matter intake 
and various “efficiency” traits would respond favorably to selection. Table 1 below depicts 
the heritability (on the diagonal) and genetic correlations (on the off diagonal) of several 
feed efficiency traits.  

 
Table 1.  Heritabilities and genetic correlations for feed efficiency traits1. 

1Adapted from Rolfe et al. (2011). 
 

 Although EPD for traits related to the cost of production are limited, some EPD do 
currently exist to select for partial efficiency.  Examples of those are detailed below. 

     Bull A  Bull B 
Residual average daily gain  -0.1  0.05   
Residual feed intake   -0.3  0.0 
Maintenance energy   0  10 
 
Residual average daily gain (Angus)- Calves sired by bull B should gain 0.15 pounds per 
day more when fed the same amount of feed during the post weaning phase. 
 
Residual feed intake (Gelbvieh)- Calves sired by bull A would consume 0.3 lbs of feed per 
day less on average than calves sired by bull B to gain the same amount of weight.  
 
Maintenance energy (Red Angus)- Daughters from bull B should require 10 Mcal/month 
less energy for maintenance.  If average hay quality is 0.86 Mcal/lb. this equates to 11 lb. 
less forage per month. 
 
 Even though some EPD do exist for components of efficiency, feed intake 
phenotypes are expensive to collect and thus for the foreseeable future, wide-spread 
collection of individual intake data in the seedstock sector will remain sparse at best.  
Moreover, residual gain and residual feed intake are not phenotypes per se, but rather 
restricted selection indices.  Although these residuals are biologically intriguing, they are 

 ADG DMI RFI G:F 
ADG 0.26 0.56 -0.15 0.31 
DMI  0.40 0.66 -0.60 
RFI   0.52 -0.92 
G:F    0.27 
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suboptimal at generating response to overall profitability given that they only allow for 
improvement in either gain or feed intake and not both traits simultaneously.  

Selection Methods for Efficiency 

 In terms of guidelines for the U.S. beef industry to follow relative to genetic 
selection for improved feed efficiency, Nielsen et al. (2013) recommend an index-based 
approach. From a total life-cycle perspective, maintenance energy costs are estimated to 
be about 70% of the total energy intake in the beef production system. Thus a primary goal 
must be to decrease maintenance energy requirements while not reducing output. This 
means that profitable selection decisions must contemplate multiple traits simultaneously.  
Using selection index values will be very beneficial to achieve the overall goal of improved 
profitability. If constructed correctly, multiple-trait index tools can account for 
antagonisms that may exist between feed intake and other economically relevant traits, 
including cow-herd centric traits. 

Hazel (1943) first introduced the selection index equations to calculate index coefficients 
(b) for each of the selection criteria:  

 

b= P-1Gv 
 
where P is a n x n matrix of the phenotypic (co)variances among the n traits measured and 
available as selection criteria, G is a n x m matrix of the genetic (co)variances among the 
n selection criteria and m objective traits, and v is an m x 1 vector of economic values for 
all objective traits.   
 Rolfe et al. (2011) estimated selection response for three feed efficiency related 
phenotypes and four different selection indices (Table 2). From these results it is clear that 
an economic index approach to selection is the most desirable. 

 

Table 2. Expected response (selection intensity*lbs) to selection based on several 
criterion1. 

 

1 Adapted from Rolfe et al. (2011). 

Selection Criterion2 Direction DMI Response, lbs. Gain Response, lbs. 
DMI Down -125.0 -11.91 
GAIN Up +57.98 +16.54 
G:F Up -60.63 +5.29 
I1 Down -98.33 +4.19 
I2 Down -84.88 0 
I3 Down -27.34 +11.91 
I4 Down 0 +16.98 
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2 DMI= Dry matter intake; GAIN = Weight gain; G:F = Gain to feed ratio; I1 = 
Phenotypic RFI; I2 = Genetic RFI; I3= Economic index including DMI and Gain; 
I4=Economic index including Gain and RFI. 
 
 The improvement of efficiency is inherently a multiple-trait issue and thus the 
development and utilization of indexes to select for the most profitable animals is critical.  
An interactive example of such an index is available at www.beefefficiency.org.  The 
interactive tool enables the user to calculate residual average daily gain, residual feed 
intake, and index three from table 2.   

 Although Rolfe et al. (2011) illustrated that an economic index based approach was 
superior to single trait selection when considering both feed intake and gain, a more 
comprehensive approach is to consider feed intake as a cost in existing economic selection 
indices such as Angus’s $B or Simmental’s TI, therefore considering traits such as carcass 
merit, feed intake, carcass weight, survival, and other traits as dictated by the complete 
breeding objective. This approach is currently being implemented by several U.S. beef 
breed associations, in part enabled by the massive number of phenotypes generated through 
the USDA-NIFA funded project National Program for Genetic Improvement of Feed 
Efficiency in Beef Cattle that has provided phenotypes and genotypes to these associations 
at no cost.  

 The importance of feed intake in a terminal index is well documented.  In example, 
Ochsner et al. (2016) assumed a terminal breeding objective for Beefmaster cattle whereby 
all calves were born from mature cows, retained through the feedlot phase and sold on a 
grid-based system.  The five objective traits considered for the terminal index included hot 
carcass weight (HCW), marbling score (MS), ribeye area (REA), 12th-rib fat (FAT) and 
feed intake (FI), with the latter representing the only expense related phenotype among the 
objective traits. Relative economic values for the terminal objective traits HCW, MS, 
ribeye area REA, FAT, and FI were 91.29, 17.01, 8.38, -7.07, and -29.66, respectively.  
This illustrates that sale weight, in this case hot carcass weight, and feed intake are drivers 
of profitability. Selection criteria for both indices were selected from the ten EPD currently 
reported by BBU.  The suite of BBU EPD included:  birth weight (BWT), WWd, WWm, 
365-day yearling weight (YW), scrotal circumference (SC), ultrasound ribeye area 
(UREA), ultrasound 12th-rib fat (UFAT), ultrasound rump fat (URUMP), ultrasound 
intramuscular fat percentage (UIMF) and total maternal (TM).   Selection criteria 
considered for the terminal index were YW, UREA, UFAT and UIMF. The accuracy of 
this index (rHI) was estimated to be 0.50.  If additional economically relevant traits could 
be added to the suite of selection criterion, such as an EPD for FI, this accuracy would 
increase. In the context of feed intake, this will require additional phenotyping efforts 
supported by a genomics approach. 

A Genomics Approach 

 Genomic information, in the form of Single Nucleotide Polymorphisms (SNP), has 
always held the promise to increase the accuracy of Expected Progeny Differences (EPD). 
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This promise has finally been realized for those breeds that incorporate this information 
into their EPD calculations. One key advantage to genomic predictors (i.e. Molecular 
Breeding Values (MBV)) is that this information can be garnered early in the life of the 
animal thus enabling an increase in the accuracy of EPD particularly on young animals, 
which have not yet produced progeny. The benefit of the inclusion of genomic predictions 
into EPD estimates is proportional to the amount of genetic variation explained by the 
genomic predictor.  

 Genomic-enhanced EPD were first estimated for carcass traits and then evolved to 
other production traits for which EPD already existed.  This is due to the need for 
phenotypes to develop (train) the genomic prediction equations. Consequently, genomic 
tests for “novel” traits such as different measures of efficiency require a significant effort 
in order to build large resource populations of animals with both phenotypes and 
genotypes. In this case, strategic genotyping and phenotyping could have an economic 
advantage over routine collection of very costly phenotypes. 

 The underlying question commonly asked by producers is “does it work?”.  It is 
critical to understand that this is not a valid question, as the true answer is not binary (i.e. 
yes or no).  The important question to ask is “how well does it work?”, and the answer to 
that question is related to how much of the genetic variation the marker test explains. The 
magnitude of the benefits will depend on the proportion of genetic variation (%GV) 
explained by a given marker panel, where the %GV is equal to the square of the genetic 
correlation multiplied by 100.  

 Combining these sources of information, molecular tools and traditional EPD, has 
the potential to allow for the benefits of increased accuracy and increased rate of genetic 
change.  Increased rate of genetic change can occur by increasing the accuracy of EPD, 
and thus the accuracy of selection, and by decreasing the generation interval.  This decrease 
in the mean generation interval could occur particularly for sires if they are used more 
frequently at younger ages given the increased confidence in their genetic superiority due 
to added genomic information. 

 Figures 1 and 2 illustrate the benefits of including a MBV into EPD (or Estimated 
Breeding Value (EBV) which is twice the value of an EPD) on accuracy (BIF scale) when 
the MBV explains 10 or 40% of the genetic variation (GV), which is synonymous with r2 
values of 0.1, and 0.4.  The darker portion of the bars shows the EPD accuracy before the 
inclusion of genomic information and the lighter colored portion shows the increase in 
accuracy after the inclusion of the MBV into the EPD calculation. As the %GV increases, 
the increase in EPD accuracy becomes larger.  Additionally, lower accuracy animals 
benefit more from the inclusion of genomic information and the benefits decline as the 
EPD accuracy increases.  Regardless of the %GV assumed here, the benefits of including 
genomic information into EPD dissipate when EPD accuracy is between 0.6 and 0.7.  On 
the other hand, when %GV is 40, an animal with 0 accuracy could exceed 0.2 accuracy 
with genomic information alone.  This would be comparable to having approximately 7 
progeny for a moderately heritable trait like feed intake.  It should be noted that although 
a SNP panel that only explains 10% of the GV would be considered poor for weight traits, 
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if phenotypes do not exist, a panel of this efficacy would be beneficial. 
 
Figure 1. Increase in accuracy from integrating genomic information that explains 10% of 
the genetic variation into Estimated Breeding Values (EBV).  
  
 

 
 
 
Figure 2. Increase in accuracy from integrating genomic information that explains 40% of 
the genetic variation into Estimated Breeding Values (EBV).  
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Current efforts 

 A USDA-NIFA funded project, National Program for Genetic Improvement of 
Feed Efficiency in Beef Cattle, to develop genomic predictors for feed intake/efficiency 
using dense single nucleotide polymorphism (SNP) panels (50,000 and 770,000 SNPs). To 
do this requires the collection of feed intake records from thousands of animals that are 
genotyped with either the 50K or 770K (HD) SNP assays across multiple breeds in order 
to develop genomic predictors that are accurate and robust across cattle populations.  Table 
3 contains initial genome-wide association results from this project (Saatchi et al., 2014).  
Four populations of cattle involving over 5,000 animals were used for a genome-wide 
association study (GWAS) of different feed efficiency related traits. The heritability 
estimates (h2) represent the proportion of phenotypic variation explained by the SNPs. 
Although all estimates suggest that these traits are moderately heritable, differences in 
parameter estimates exist between the resource populations likely due to differences in 
population size, structure (e.g., the number of contemporary groups, degree of relatedness 
among animals, etc.), and data collection methods.  

 

Table 3. Genomic heritability estimates for ADG, MBW, RFI and DMI1 
Population2 N SNP 

Density 
ADG h2 MBW h2 RFI h2 DMI h2 

HH 847 HD 0.27 0.50 0.45 0.41 
USMARC 1,160 50K 0.30 0.47 0.49 0.35 
SM x AN 1,444 HD 0.23 0.38 0.32 0.27 
AN 1,580 HD 0.19 0.49 0.21 0.35 

1  ADG = Average daily gain, MBW = mid-test metabolic body weight, RFI = Residual 
feed intake, DMI = dry matter intake.  
2 HH=Hereford cattle fed at Olsen Ranches, USMARC=F1

2 composites from the Meat 
Animal Research Center Cycle VII, SM x AN=Legacy Simmental x Angus animals fed at 
the University of Illinois, AN=Angus cattle fed at Circle A and the University of 
Missouri.   
 
 Saatchi et al. (2014) also identified regions of the genome that appear to harbor 
large effect quantitative trait loci (QTL).  Given the complex nature of these traits (the fact 
they are controlled by numerous genes), a large effect QTL was considered as a locus 
explaining greater than 1% of the additive genetic variation. A total of 5, 5, 17, and 10 of 
these large effect QTL were identified for ADG, DMI, MBW and RFI, respectively.  Some 
of the QTL identified had substantially larger effects than might have been expected. For 
instance, a QTL in Angus explained over 10 and 14% of the additive genetic variation in 
DMI and MBW, respectively. No QTL identified for RFI explained greater than 2.5% of 
the additive genetic variation.  These QTL regions were generally breed specific, further 
illustrating why genomic predictors are not easily transferable across breeds.  
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 In 2009, the concept of an integrated project focused on the development and 
translation of genomic selection tools in beef cattle was initiated as a collaboration between 
the National Beef Cattle Evaluation Consortium, the University of Nebraska-Lincoln, the 
U.S. Meat Animal Research Center, and the seven largest U.S. beef breed associations.  
This project, called the Weight Trait Project (WTP) due to the initial focus on weight traits, 
has served as the industry demonstration project for the before mentioned USDA-NIFA 
project.  The WTP has engaged 24 seedstock producers from seven states representing the 
following U.S. beef breeds: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Limousin, 
and Simmental.  Through this demonstration project, these producers were able to 
nominate herd bulls that were used via AI to breed cows either at the U.S. Meat Animal 
Research Center or the Rex Ranch. The corresponding progeny were then feed in 
individual feed intake facilities and genotyped with the BovineSNP50v2 beadchip.  All 
sires were genotyped with the HD assay (770K).  All corresponding phenotypes have been 
provided to the respective beef breed associations.  Over 770 calves were produced with 
complete feed intake data representing 63 sires.   

Summary 

 Results from this project illustrate that by using either the 50K or 770K SNP assay, 
the genomic heritability estimates of traits related to feed efficiency are in general 
agreement with heritability estimates from the scientific literature using phenotypes and 
pedigree information.  The fact that these traits are moderately heritable and that the SNP 
assays can explain large proportions of the phenotypic variation suggest that genetic 
progress in these traits can be made by using genomic selection.   However, this study 
further illustrates the breed specific nature of genomic predictors and thus caution should 
be used if attempting to use a genomic predictor in a population that is distantly related to 
the training population (e.g., across breeds).  The continued collection of feed intake 
phenotypes will be required to refine and retrain genomic predictions overtime.  To this 
end, strategic phenotyping and the use of multiple-trait GWAS models are needed to ensure 
that genotyped populations represent the larger target population and that information can 
be borrowed from more densely recorded traits such as the plethora of weight phenotypes 
(e.g. post weaning gain) currently available.  

 In terms of delivering tools and information to the beef industry for use in 
National Cattle Evaluation, this project has provided both phenotypes and genotypes to 
beef breed associations, initial predication equations to three beef breed associations, and 
online resources for the calculation of an economic-based efficiency index.  For those 
breeds that relatively recently began including feed intake into current indices, many of 
the phenotypes were provided by this project.  Next steps will need to include expanding 
the number of breeds for which prediction equations are developed, and exploring the 
utility of a newly developed assay with putative functional content (GGPF250).  
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Bolt and an Alternative Approach to Genomic EPDs 

Bruce L. Golden, Ph.D., CEO, Theta Solutions; Rohan Fernando, Professor, Iowa State 
University; and Dorian J. Garrick, Professor, Iowa State University 

 

Introduction 

 Misztal et al. (2009) and Aguilar et al. (2010) introduced approaches for single-step 
analyses that combined genotyped and non-genotyped animals in the same analysis on the basis 
of pedigree and genomic relationship matrices and their inverses. Fernando et al. (2014) and 
Garrick et al. (2014) presented an alternative computing algorithm for the same model that gives 
identical genomic enhanced EPDs but has different computational properties. That single-step 
approach, called the Hybrid Model, provides solutions for the marker effects and the imputation 
errors for non-genotyped animals, rather than directly providing the EBVs.  It has computational 
advantages over that of Misztal et al. (2009) in that it does not require any large matrix inverse, 
and it has the ability to implement marker selection methods such as Bayes C (or other forms of 
the Bayesian alphabet).  Implementing a marker selection approach resulted in a substantial 
increase in the accuracy of the predictions from the same amount of genotype data.  Our aim in 
this paper was to present an alternative formulation of the mixed model equations (MME) from 
those presented in Fernando, et al. (2014) and Garrick, et al. (2014).  Putatively called the Super 
Hybrid Model (SHM; Fernando and Garrick, unpublished), the new MME are even easier to 
assemble and solve then those of the Hybrid Model. 

 Additionally, we present here results from implementing these models in the Biometric 
Open Language Tools software package (Bolt) available from ThetaSolutions LLC.  Designed 
specifically to work with commodity class General Purpose Graphics Processing Units (GPU), we 
have solved and sampled very large, complex multiple trait SHM that include maternal effects.  In 
addition to the original Hybrid Model, and the SHM, we have implemented the original single-
step approach (SSGBLUP) of Misztal et al. (2009) in Bolt.  Breeding companies and organizations 
in several countries are currently converting their routine evaluations to use Bolt, including the 
Pan American Cattle Evaluation (PACE) of Hereford cattle and the multibreed International 
Genetic Solutions (IGS) evaluation of Angus, Red Angus, Gelbvieh, Limousin, Maine Anjou, 
Shorthorn, and Simmental pure- and crossbred cattle from US and Canada.  Here we discuss 
implementation of Bolt for IGS for their twelve participating beef breed associations. 

The Super Hybrid Model 

 The basic form of the SHM includes the usual fixed effects; marker effects, α; breeding 
value effects for animals that are not genotyped, un; and residual effects, e.  The model equation is 

𝑦 = 𝑋𝑏 + 𝑍'𝑢' + 𝑍)𝑀)𝛼 + 𝑒 

where X is an incidence matrix of fixed effects, b, on observations in y;  𝑍 = 𝑍' 𝑍) , is an 
incidence matrix of animals with observations in y; g and n subscripts refer to animals who were 
genotyped and animals who were not genotyped respectively; M is the matrix of marker values 
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and 𝛼 are the random additive marker effects; 𝑢' are the random breeding values for animals 
who were not genotyped and e are the residual effects on y.  

 In large problems the only substantial amount of work is the formation of the diagonal 
block for the marker effects.  However, Bolt has optimized routines that have achieved over 
7TFlops on inexpensive enthusiast class hardware when performing this computation making it 
highly tractable.  Additionally, the computation of the diagonal blocks is performed only once, in 
parallel, during assembly of the MME.   

We have developed optimized asynchronous parallel methods for high performance 
sampling of the dependent variables (Golden et al., 2014).  Using Gibbs sampling results in high 
quality estimates of the prediction error variances including the variance of functions of the EPD 
such as economic indexes.  Sampling also permits the implementation of marker selection 
models which results in substantial increases in accuracy over SSGBLUP which always fits all 
markers. 

 Other features of the SHM formulation of the MME include no large inverse matrices as 
are required in SSGBLUP or solutions involving the forward/backward substitution solve (or 
other solve) at each round of sampling as was required for efficient implementation of Fernando 
et al. (2014). 

Expanding the SHM to include extra polygenic effects is trivial and extending it to 
maternal effects and multiple traits is straight forward.   Including an extra polygenic effect is 
important when the markers do not describe all the additive genetic variance of the traits.  This 
has been shown to be the case with current marker information (Saatchi and Garrick, 2016).  
Failure to do so results in widely-used sires with high accuracy EPD having slightly different 
genomic prediction estimates compared to those from traditional pedigree analyses. 

The Bolt Software 

 Bolt is a collection of over one hundred software tools implemented as a set of 
commands used to manipulate data and the matrices involved in statistical problem assembly and 
solution.  Combining Bolt with an environment such as the Born Again Shell (bash) or other 
computer language like environments (e.g., Python) provides a full featured language the 
professional analyst can use for many classes of statistical analysis of very large data sets. 

 Bolt is supported in the Linux environment and is designed to use low-cost computer 
workstation hardware with at least one general purpose CUDA class graphics processing unit 
(GPU).  GPU computing has become a standard method in scientific computing for achieving 
very high performance computations at a relatively low cost (Owens, et al., 2008).  Originally 
developed to process data for video editing and the computer gaming industry, GPU were 
adapted to provide general purpose computing for numerically intensive problems.  Two widely 
used programming environments available for GPU computing include OpenCL and CUDA.  
The CUDA environment is available only for use with GPU designed by the NVidia Corporation 
while OpenCL can be used on other manufacturers’ GPU (e.g., Advanced Micro Devices, Inc.) 
as well as Nvidia’s GPU.  However, the CUDA programming environment developed by 
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NVidia, is more fully featured and exceeds most performance benchmarks compared to other 
manufacturers’ GPU.  Particularly, the sparse matrix libraries and basic linear algebra libraries in 
the CUDA environment are highly optimized. CUDA is freely available and is well supported.  
NVidia sells both enterprise and enthusiast class GPU.  We have found that lower cost enthusiast 
class GPU actually perform faster than the enterprise class GPU and are a fraction of the cost.  
Although Bolt supports both types of processors, we recommend its use with low cost consumer 
class workstations using enthusiast class GPU in the CUDA environment and Linux. 

 Bolt is designed not only to use GPU but to maximize the parallel execution capability of 
multiple core CPU, often achieving full so-called embarrassingly parallel execution.  
Additionally, Bolt is designed to take advantage of systems with multiple-GPU installed.   Bolt’s 
design makes it easy for professional analysts to make decisions about applying CPU cores and 
GPU to a single analysis or splitting the CPU cores and GPU among different problems.  The 
complexity of CPU and GPU control is largely abstracted from the analyst so that the best 
analytical methods to apply to a problem can be focused on. 

The IGS International Genetic Evaluation 

 Lead by a consortium of beef breed associations, the International Genetic Solutions 
organization has worked with Theta Solutions, LLC to implement a multi-breed genetic 
evaluation including data from twelve different beef breed associations from North America.   

The first prototype analysis included thirteen traits’ representing threshold and 
continuous observations from 6,987,238 pedigree observations including 45,176 observations on 
animals with genotypes, and 5,663,965 animals with performance observations.  Traits were run 
in meaningful multiple trait combinations.  For example, EPDs for birth weight, weaning weight, 
milk, and total maternal were solved together.  The model included extra polygenic effects for 
birth additive direct, weaning additive direct and weaning additive maternal effects. 

The analysis was performed on a computer built on an ASRock X99 Extreme11 
motherboard with an Intel Xeon E5-2643 V3 (6 core at 3.4GhHz) processor.  It had 64G of ECC 
DDR4 memory and four Titan X GPU.  No overclocking of the CPU or GPU was performed.  
Our previous work (Golden, et al., 2015) has shown that substantial benefit from overclocking 
can be obtained.  However, the E5-2643 cannot be overclocked.  

The timings given here are for the so-called MSRP (Saatchi and Garrick, 2016) subset of 
genetic markers.  The strategy implemented for the IGS analysis is to use a Bayes C0 analysis for 
an informative subset of markers identified from a Bayes C analysis (with pi=.95) applied to 
higher denity (e.g. 70k markers) periodically performed to refresh and validate the subset list.  
Our as yet unpublished studies have shown that this results in equivalent accuracies of the Bayes 
C analysis predictions’ and are substantially more accurate than Bayes C0 of larger marker sets 
(e.g., BovSNP50).  Another advantage is these analyses using relevant subsets of markers 
complete relatively quickly, allowing for new analyses to be performed when new genotype data 
are received.  This way, IGS can turn around results to their members and customers as 
frequently as daily.   The wall-clock time to assemble the SHM for this analysis was 50 minutes 
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and 25 seconds. Once assembled the time to solve the equations to obtain the EPDs using a PCG 
solver was 9 minutes and 39 seconds.   

A Bayes C0 sampling strategy with four parallel chains of ten thousand samples each 
after being seeded with the PCG solver solutions was used to obtain prediction error variances.  
The wall clock time to obtain the prediction error variances was 5 hours and 44 minutes. 
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Dale Van Vleck 
US Meat Animal Research Center and Department of Animal Science, 

University of Nebraska-Lincoln 
 

Introduction 

 About 30 years ago there was concern in both the beef and dairy industries that too much 
emphasis was being given to accuracy of genetic evaluation. This article will discuss attempts to 
reduce emphasis on accuracy and, thus increase emphasis on the predictor of genetic value itself 
which is commonly known as estimated breeding value (EBV). Accuracy is a key component of 
more useful measures of risk such as standard error of prediction which can be used to create 
confidence ranges in units of measurement for true breeding value based on the EBV and the 
standard error of prediction. The concept of standard error of prediction can be extended to 
comparison of pairs of EBV. The influence of genomic relationships and Bayesian analyses on 
accuracies and standard errors of prediction will also be briefly introduced. 

Accuracy 

 Reports of genetic evaluations, in addition to EBV (or EPD = EBV/2 or PTA = EBV/2), 
provide an item named ‘accuracy’. Accuracy is an indicator of risk of possible change in the 
EBV. Accuracy is defined as the correlation between the EBV and true BV of an animal. High 
accuracy suggests little possible change and low accuracy suggests considerable possible change 
when later genetic evaluations are based on many, many more records. Accuracy of an EBV is 
the same as the accuracy of a corresponding EPD.  A more useful measure of risk is the standard 
error of prediction (SEP) which depends on squared accuracy and the genetic standard deviation 
of the trait. [The square of the genetic standard deviation is the genetic variance of the trait. 
Genetic variance (symbol is Vg for this discussion) is the part of the total (phenotypic) variance 
for a trait that is due to effects of genes of animals.]  SEP is in units of how a trait is measured 
(e.g., pounds) and thus is a quantitative measure of possible change.  Accuracy is ‘unit-less’ and 
can range from 0.0 to 1.0. SEP can range downward from the genetic standard deviation for 
accuracy of 0.0 to 0.0 for accuracy of 1.0. As would be expected, the standard error of prediction 
for an EPD is one-half the standard error of prediction for an EBV. 

Reliability 

 High accuracy may receive too much emphasis relative to the EBV of an animal. To 
reduce emphasis on traditional accuracy other measures of ‘accuracy’ have been proposed and 
reported with EBV. The dairy industry uses a method named ‘reliability’ which was 
implemented in about 1989 by Paul VanRaden and others at the Animal Improvement Programs 
Laboratory of the USDA which for many years did the genetic evaluations for all U. S. dairy 
breeds. Reliability is simply the square of traditional accuracy and represents the fraction of 
genetic variance accounted for by the EBV. Squared accuracy (reliability) approaches perfection 
(1.00) more slowly than traditional accuracy. It too is unit-less. (See Table 1.) For example with 
accuracy of 0.90, reliability is 0.81. Smaller reliability relative to traditional accuracy reduces the 
temptation to over emphasize ‘accuracy’ and thus will increase emphasis on the EBV. 
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BIF-Accuracy 

 The beef industry chose a different approach. Richard Willham proposed an expression 
which was implemented by some beef breeds about 1985. It also is unit-less and approaches 1.00 
even more slowly than reliability. It has been named ‘BIF-accuracy’. It has been somewhat 
confusing because of the name and the equation used which is based on traditional accuracy 
squared and the standardized standard error of prediction as well as a square root: 

BIF-accuracy = 1.0 – SQRT[1.0 – acc2].      

As accuracy increases toward 1.0, BIF-accuracy increases at a rate dependent on SQRT[1.0 – 
acc2]. The rate of increase toward 1.0 is much less than the rate for accuracy or the rate for 
reliability. [See Table 1.] The standard error of prediction (SEP) is SQRT[(1.0 – acc2)(Vg)]. 
SQRT[1.0 – acc2] is standardized SEP (that is, it corresponds to genetic variance, Vg = 1.0). 
Thus BIF-accuracy basically tracks the approach of SEP to zero. 

Progeny accuracy 

 An approach, never proposed or implemented, to reduce emphasis on accuracy would 
have been to report traditional accuracy for a future progeny of a sire. Accuracy for a future 
progeny with no records is one-half the accuracy of the EBV of its sire. The reason for the one-
half is that the sire is related by one-half to his progeny. Even if proposed it probably would not 
have been adopted because ‘accuracies’ less than 0.50 would, no doubt, have created doubt about 
validity of corresponding EBV or EPD. 

Standard error of prediction 

 The standard error of prediction (SEP) provides a more direct measure of risk (possible 
change) or chance that true breeding value is so much greater or so much smaller than the EBV 
than does any of the ‘accuracies’. SEP was introduced in discussion of BIF-accuracy as 
SQRT[(1.0 – acc2)(Vg)] where Vg is the genetic variance of the trait. Prediction error is the 
difference between EBV and true BV:  

PE =  (EBV – true BV).  

Variance of prediction error, V(PE), which is also often referred to as prediction error variance, 
PEV is:                                                                    

PEV = V(PE) = V(EBV – true BV)= (1.0 – acc2)(Vg). 

 A numerical value for PEV rather than SEP (the square root of PEV) comes directly from 
the statistical method used to obtain EBV and fortunately without having to know any true BV. 
Prediction error variance (PEV) is in units of measurement squared (for example, lb x lb). The 
square root of PEV is SEP which is in units of measurement (that is, lb) so that SEP as an 
indicator of risk is on the actual scale of measurement. The SEP decreases as accuracy increases. 
[See Table 1.] A property of Henderson’s mixed model equations used to obtain EBV is that the 
PEV’s are the diagonal terms of the inverse of the coefficient matrix of those equations. That 
inverse can be used to solve for EBV but, unfortunately, inverses needed for most breed 
evaluations are impossible to obtain with current and foreseeable computing power. Iterative 
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methods are used to solve for EBV. In theory the same iterative methods can be used to obtain 
individual PEV, but in practice are not feasible. [But see Bayes.] Time required would be time 
for solving for EBV multiplied by the number of animals in the pedigree. Usually practical 
values of accuracy can be approximated. From approximate accuracy, PEV can be computed. 
With inverse solutions to the genetic evaluation equations, PEV can be determined directly and 
then used to obtain traditional accuracy.  

 The standard error of prediction is a direct measure of possible change. Possible change 
is risk in units of the trait and thus has dollar value. Risk can be ‘positive’ or ‘negative’.  That is, 
the chance true BV may exceed EBV by a certain amount is the same as the chance true BV is 
less than EBV by the same amount. The up-side risk (possible gain) is the same as down-side 
risk (possible loss). Monetary values of up-side and down-side risk are not necessarily 
equivalent.  

Confidence ranges 

 Confidence ranges are often used to determine probabilities of possible change assuming 
a bell-shaped distribution of true BV around the EBV. One-half of true BV would be expected to 
be greater than the EBV and one-half would be expected to be less than the EBV. The interval 
from EBV – (1)SEP to EBV + (1)SEP corresponds to 68% of possible BV for an animal centered 
on the EBV for the animal. The range can be shrunk or expanded corresponding to the 
probability of true BV being in the interval. For example, the interval from EBV – (2)SEP to 
EBV + (2)SEP would be expected to contain 95% of true BV. Units of SEP other than (1) or (2) 
would correspond to other confidence ranges. 

 With a 68% confidence range, 32% would be outside the range: 16% above the positive 
end of the range and 16% below the negative end of the range. With the 95% range, 2.5% would 
be expected to be greater than the upper end of the CR and 2.5% would be expected to be less 
than the lower end of the CR. Ranges for many combinations of EBV and SEP will overlap 
considerably. The more important of EBV or SEP is the EBV which centers the range. 
Comparison of ranges provides a more direct measure of risk than does accuracy. 

Comparison of pairs of EBV 

 Selection decisions are essentially based on comparison of the EBV of a pair of animals.  
The ideas of confidence ranges and possible change can be applied to differences in pairs of 
EBV. The explanation becomes more complicated but the statistical principles are the same. 
Now there are two prediction errors: 

PE1 = EBV1 – BV1 and PE2 = EBV2 – BV2.  

 To form confidence ranges, variance of PE1 – PE2 is needed instead of V(PE). In 
expanded form V(PE1 – PE2) = V(PE1) + V(PE2) – (2)COV(PE1,PE2). What is new is the 
covariance between the pair of prediction errors. A covariance is a measure of how two things 
vary together. EBV of a pair of relatives would be expected to be correlated (positive covariance) 
because some of the same information would be used in both EBV. Except for close relatives in 
the same management unit, the covariance is likely to be small relative to V(PE1) and V(PE2). 
[That is my expectation until proved to be different for other than close relatives.] Obtaining a 
prediction error covariance requires the inverse of the coefficient matrix of the genetic evaluation 
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equations as do the variances of prediction errors.  The potential number of prediction error 
covariance’s is much larger than number of prediction error variances: n(n – 1)/2 where n is the 
number of animals in the pedigree. Approximations of prediction error covariance’s are probably 
more difficult to obtain than approximations of V(PE). If iteration were used to obtain V(PE) for 
an animal, a by-product would be the PE covariance’s between its EBV and the EBV of all other 
animals in the pedigree. 

If the PE covariance can be safely ignored, the standard error of the difference between a 
pair of EBV can be calculated easily although accuracies for two EBV must be known or 
approximated. Then V(PE1 – PE2) = V(PE1) + V(PE2) = (1.0 – acc1

2)Vg + (1.0 – acc2
2)Vg  =  

(2.0 – acc1
2 – acc2

2)Vg. The square root of V(PE1 – PE2) is the standard error of the predicted 
difference (SEPD) between EBV. [SEPD is not the standard error of an EPD.] Computation of 
SEPD would not be needed for most pairs of animals. The animals of most interest are potential 
herd sires. For pairs of interest, SEPD can be obtained using a simple table which would apply to 
all traits. The table values would be multiplied by the genetic standard deviation for a specific 
trait. The number of rows and columns of the table would correspond to ascending or descending 
levels of accuracy; for example, from 0.05 to 0.95 by increments of 0.05. [See Table 2.] Entries 
in the table would be SQRT[(2.0 – acci

2 – accj
2)] for the intersection of the ith row and jth column.  

[Table values corresponding to accuracies between, for example, 0.75 and 0.85 could be 
obtained by interpolation although interpolation may be of little practical importance.] As an 
example of the use of the table if accuracy for bull 1 was 0.55 and accuracy for bull 2 was 0.95, 
the table entry is 1.05 [SQRT(2.0 – 0.552 – 0.952) = 1.05]. The second step in obtaining SEPD is 
to multiply the 1.05 by the genetic standard deviation of the trait, SQRT[Vg].  

If SQRT[625] = 25 is the genetic standard deviation for the trait, SEPD(EBV1 – EBV2)   
= 1.05 x 25 = 26.25. Confidence ranges and possible changes will now correspond to BV1 – BV2 
given EBV1 – EBV2. The confidence ranges will be centered at EBV1 – EBV2. Interpretation will 
be as for SEP, but for BV1 – BV2 rather than for BV1 – 0.0 or BV2 – 0.0. Still to be determined is 
whether COV(PEi, PEj) can be safely ignored. A relatively small covariance would not change 
SEPD of much importance. Such covariance’s, will be positive and thus would make SEPD 
calculated not including the covariance smaller than it should be, but how much smaller would 
be important needs to be investigated.  A large covariance (correlation) between PE of EBV of a 
sire and PE of EBV of his son would be expected especially if one had no progeny with records. 
A sire and his son would seem unlikely to be compared. Paternal half sibs would be more likely 
to be candidates for selection. If they had no records or progeny with records their EBV would 
be equal as would SEP so that SEPD would not be important. 

 Some of the following speculation, if confirmed, would make some of the preceding 
discussion irrelevant.  

G-BLUP 

 With G-BLUP (using the genomic relationship matrix, G, rather than the identity by 
descent relationship matrix, A), all genotyped sires will have the same or nearly the same 
accuracy and the same SEP and SEPD because the same information is available for all sires 
(same SNPs). Exceptions are for genotyped sires having many progeny with records. Confidence 
ranges would differ only by the center value, EBV or EBV1 – EBV2. Different ‘chips’ might 
yield different accuracy. It would seem that covariance’s between PE are more likely to be non-
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zero with G-BLUP than A-BLUP. Would covariance’s be the same for all pairs of genotyped 
animals? If so, iteration for only one column of the inverse of the coefficient matrix would be 
needed to obtain prediction error variances and covariance’s between all pairs of prediction 
errors. 

Bayes 

 Bayesian methods may make ‘direct’ calculation of SEP more feasible. Bayesian 
‘solutions’ are obtained by iteration similar to iteration to obtain traditional solutions. The usual 
method, Gibb’s sampling, produces MCMC chains of ‘solutions’ for an individual which 
correspond to a distribution around the true BV. The final ‘solution’ is usually taken to be the 
average or median of the chain of solutions after ‘burn-in’ and thinning. Chains could be 
obtained holding VC constant, that is, Gauss-Seidel iteration but with sampling for solutions but 
not variance components.   The chains for an individual can be used to calculate something 
comparable to variance of prediction error from which something comparable to accuracy could 
be calculated as before. The covariance between pairs of predictors could also be obtained from 
pairs of chains which would incorporate the covariance between pairs of prediction errors. 

 

Summary 

 Traditionally accuracy has been defined as the correlation between EBV and true BV and 
has been used as an indicator of risk of possible change. 

 Reliability (squared accuracy, acc2) and BIF accuracy (1 – SQRT[1 – acc2]) both go 
towards a maximum of 1.0 more slowly with more information than accuracy and were 
developed to reduce emphasis on ‘high’ accuracy vs. EBV. 

 The standard error of prediction is a more quantitative measure of risk than accuracy. It 
goes toward 0.00 as accuracy increases: SEP = SQRT[(1.0 – acc2)(Vg)] where Vg is genetic 
variance of the trait. The SEP can be used to obtain ranges such as EBV – 2(SEP) to EBV + 
2(SEP) which would include true BV with confidence of 95%. Of the other 5%, 2.5% would be 
above the upper end of the range and 2.5% below the lower end of the range. 

 The concept of SEP can be extended to differences in pairs of EBV. SEPD would be the 
standard error of the difference between a pair of EBV. Confidence ranges would be centered on 
EBV1 – EBV2.  If the covariance between pairs of prediction errors, Covariance(PE1, PE2), is 
small relative to V(PE1) and V(PE2), SEPD can be approximated well by SQRT[(2.0 - acc1

2 – 
acc2

2)Vg]. A table of SEPD corresponding to pairs of accuracies can then be used to obtain 
SEPD for any trait and pair of EBV. 

 Using the genomic relationship matrix (G-BLUP) rather than the identity by descent 
relationship matrix is likely to result in nearly equal accuracy for many genotyped animals. Then 
SEP and SEPD would also be equal. Confidence ranges would also be equal but with different 
centers depending on EBV. 

 Variances and covariance’s of MC-MC chains from Gibb’s sampling could be used to 
obtain equivalents of variances and covariance’s of prediction errors and from those equivalents 
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accuracies can be obtained without the inverse of the coefficient matrix and without 
approximations of accuracy. 

  

112



Table 1. Comparison of accuracy, reliability, BIF-accuracy and standard error of prediction 
(genetic standard deviation of 25). 

Accuracy Reliability BIF-accuracy SEP 

0.10 0.01 0.005 24.75 

0.20 0.04 0.020 24.00 

0.30 0.09 0.046 22.75 

0.40 0.16 0.083 21.00 

0.50 0.25 0.134 18.75 

0.60 0.36 0.200 16.00 

0.70 0.49 0.286 12.75 

0.80 0.64 0.400 9.00 

0.90 0.81 0.564 4.75 

1.00 1.00 1.000 0.00 
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Table 2. Table values corresponding to accuracies for two EBV or two EPD which when 
multiplied by the genetic standard deviation of the trait result in the standard error of prediction 
of difference between the two EBV or two EPD. 

Accuracy for first EBV 
Acc-2      0.05    0.25    0.35    0.45    0.55    0.65    0.75    0.85    0.95 

0.05 1.41 1.41 1.41 1.49 1.38 1.35 1.30 1.22 1.09 

0.25       1.41    1.41    1.41    1.40    1.38    1.35    1.30    1.21    1.09 

0.35 1.41 1.41 1.40 1.39 1.38 1.34 1.29 1.21 1.08 

0.45 1.40 1.40 1.39 1.38 1.37 1.33 1.28 1.20 1.07 

0.55 1.38 1.38 1.38 1.37 1.35 1.32 1.26 1.18 1.05 

0.65 1.35 1.35 1.34 1.33 1.32 1.28 1.23 1.14 1.00 

0.75 1.30 1.30 1.29 1.28 1.26 1.23 1.17 1.08 0.93 

0.85 1.22 1.21 1.21 1.20 1.18 1.14 1.08 0.98 0.81 

0.95 1.09 1.09 1.08 1.07 1.05 1.00 0.93 0.81 0.61 
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Introduction 

 Historic surveys of retail beef have identified beef tenderness as a critical issue to 
consumer acceptability of beef and suggested continued investigation of pre-harvest and post-
harvest interventions to improve beef tenderness (Morgan et al., 1991).  Koohmaraie (1996) 
identified the protease µ-calpain (CAPN1) and its inhibitor calpastatin (CAST) as major factors 
affecting post-mortem tenderization in meat.  Genetic markers in CAPN1 (Page et al., 2002; 
White et al., 2005) and CAST (Casas et al., 2006; Morris et al., 2006) are commercially available 
to beef producers.  However, early studies evaluating these markers had low frequency of rare 
homozygote animals and occasionally ignored those animals from analysis (White et al., 2005; 
Morris et al., 2006) – removing the opportunity to evaluate mode of inheritance (additive or 
dominance) for a genetic marker.  Therefore, selection was used in 2 populations (Angus and 
MARC III – ¼ Angus, ¼ Hereford, ¼ Red Poll, and ¼ Pinzgauer composite) to equalize the 
allele frequency of CAPN1 haplotypes and CAST genotypes to enhance estimates for slice shear 
force (SSF) of: 1) effect size, 2) mode of inheritance, and 3) interaction between CAPN1 and 
CAST (Tait et al., 2014a; Tait et al., 2014b).  Furthermore, these studies evaluated the potential 
for genotype specific residual variances and found these models to fit significantly better than 
single residual variance models for CAST genotypes. 

Genetic Markers 

 The CAPN1 haplotypes evaluated in this study were based on two previously identified 
SNP: CAPN1_316 (BTA 29; rs17872000) (Page et al., 2002) and CAPN1_4751 (BTA 29; 
rs17872050) (White et al., 2005).  The CAPN1_316 marker segregates C and G alleles, whereas 
CAPN1_4751 segregates C and T alleles.  The CAPN1_316 and CAPN1_4751 SNPs were used 
to define haplotypes within the CAPN1 gene.  Haplotypes of interest in these studies were: 
CAPN1_316 allele C with CAPN1_4751 allele C (CAPN1-CC), CAPN1_316 allele G with 

																																																													
1 USDA is an equal opportunity provider and employer.  Mention of trade names or commercial 
products in this article is solely for the purpose of providing specific information and does not 
imply recommendation or endorsement by the U.S. Department of Agriculture. 
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CAPN1_4751 allele C (CAPN1-GC), and CAPN1_316 allele G with CAPN1_4751 allele T 
(CAPN1-GT).  Additionally, a SNP in CAST (BTA7; rs109221039) (Casas et al., 2006) 
segregating C (CAST-C) and T (CAST-T) alleles was selected to increase the frequency of 
CAST-C in these populations. 

Populations, Selection, and Tenderness Phenotype 

 Angus and MARC III composite populations from a previous calving ease selection 
experiment (Bennett, 2008) were chosen for selection of CAPN1 and CAST markers based on 
initial marker allele frequencies.  The Angus population was selected for the 2 CAPN1 
haplotypes expected to be most divergent for tenderness (White et al., 2005) (CAPN1-CC and 
CAPN1-GT) and MARC III was selected to equalize the 3 most prominent CAPN1 haplotypes 
(CAPN1-CC, CAPN1-GC, and CAPN1-GT).  Both populations were selected to increase the 
CAST-C allele.  Selection occurred for 3 years (Angus) or 4 years (MARC III), and then 3 years 
of progeny were evaluated (Figure 1).  Haplotype and allele frequencies during the evaluation 
phase for Angus were: CAPN1-CC = 0.530, CAPN1-GT = 0.363, and CAST-C = 0.348.  
Haplotype and allele frequencies during the evaluation phase for MARC III were: CAPN1-CC = 
0.267, CAPN1-GC = 0.326, CAPN1-GT = 0.385, and CAST-C = 0.397. 

 

Figure 1.  Haplotype or allele frequency by birth year in Angus (A) and MARC III composite 
(B) populations selected to equalize CAPN1 and CAST genetic markers using marker assisted 
selection.  Adapted from: A – Tait et al. (2014a) and B – Tait et al. (2014b) 

 Only steers were evaluated for carcass traits (Angus n = 199; MARC III n = 254).  All 
steers within a population were harvested on a single day within each year at a commercial 
abattoir (Angus average age = 433 d; MARC III average age = 452 d).  Carcasses were weighed 
hot, electrically-stimulated, and chilled using the facility’s proprietary system.  At 36 h 
postmortem, carcasses were ribbed between 12th and 13th ribs and camera-measured carcass data 
were collected.  A LM steak from the 13th rib region was returned to the U.S. Meat Animal 
Research Center to evaluate SSF at 14 d postmortem (Shackelford et al., 1999). 

A B 
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Statistical Analysis 

 Haplotypes and genotyping errors were identified with GenoProb software (Thallman, 
2008).  GenoProb genotypes were used for the analysis.  A single trait animal model utilized 
MTDFREML software (Boldman et al., 1995) to estimate the heritability and genetic marker 
effects within each population independently.  Fixed effects modeled were: year of birth (3 yr for 
each population), age of dam (2, 3, 4, or ≥ 5 yr), covariate age (days) of steer, CAPN1 diplotype 
(Angus = 3 classes; MARC III = 6 classes), and CAST genotype (3 classes). 

 Genotype specific residual variance models.  Genotype specific residual variance 
models were analyzed using SAS version 9.3 (SAS Inst., Cary, NC) software, providing the 
additive genetic variance matrix from the MTDFREML heritability analysis and defining 
heterogeneous residual variances based on CAPN1 or CAST genotypes in the MIXED procedure.  
A likelihood ratio test was performed to test whether the genotype specific residual variance 
model fit better than the single residual variance model. 

Results and Discussion 

 Estimates of CAST genetic effects on SSF were significant in both Angus (P < 0.001) and 
MARC III (P < 0.01) steers (Table 1).  Furthermore, the additive mode of inheritance for CAST 
genetic effect was significant in both Angus (P < 0.001) and MARC III (P = 0.05) steers, 
whereas the dominance mode of inheritance was not significant in Angus (P = 0.43) nor MARC 
III (P < 0.22) steers (Table 1).  The CAST genotype additive effects were similar in direction and 
scale between Angus (-1.257 ± 0.261 kg / CAST-T allele) and MARC III (-0.902 ± 0.464 kg / 
CAST-T allele) steers (Table 2). 

 Estimates of CAPN1 genetic effects on SSF were significant in Angus (P < 0.001) but not 
significant in MARC III (P = 0.12) steers (Table 1).  The lack of significance in MARC III steers 
is likely a function of more CAPN1 diplotypes being evaluated.  The CAPN1-GT haplotype 
effect contrasted to CAPN1-CC haplotype was larger in MARC III steers (1.153 ± 0.483 kg) 
than in Angus steers (1.049 ± 0.246 kg), but was also less precisely estimated in MARC III steers 
(Table 2).  Furthermore, in MARC III steers, CAPN1-GC was not significantly different (P = 
0.45) from the average of the CAPN1-GT and CAPN1-CC effects on SSF (Tait et al., 2014b).  
Therefore CAPN1-GC can be assumed to have ½ the additive effect of CAPN1-GT when 
contrasted to CAPN1-CC.  In both Angus and MARC III populations, no interaction was found 
between CAPN1 and CAST genotypes (P ≥ 0.40; Table 1). 
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Table 1.  Significance of CAPN1 and CAST genetic effects, modes of inheritance, and fit of 
genotype specific residual variance models for 14-day slice shear force in Angus and MARC III 
cattle populations; Adapted from Tait et al. (2014a) and Tait et al. (2014b) 

Type of effect Angus MARC III 
CAPN1, P-Value < 0.001 0.12 
CAST, P-Value < 0.001 < 0.01 
CAPN1 × CAST interaction, P-Value 0.55 0.40 
CAPN1 Additive effect, P-Value < 0.001 NA1 
CAPN1 Dominance effect, P-Value 0.19 NA1 
CAST Additive effect, P-Value < 0.001 0.05 
CAST Dominance effect, P-Value 0.43 0.22 
CAPN1 Genotype specific residual 
variance model, P-Value 0.05 0.03 

CAST Genotype specific residual 
variance model, P-Value 2.5 × 10-4 5.0 × 10-4 
1NA = Not available because 3 CAPN1 haplotypes were selected and evaluated in MARC III 
population. 

 

 

Table 2.  Estimated genotypic effects (± SE) and variance components for 14-day slice shear 
force under single residual variance or CAST genotype specific residual variance models in 
Angus and MARC III cattle populations; Adapted from Tait et al. (2014a) and Tait et al. (2014b) 

Type of residual variance model Angus MARC III 
Single   
   CAPN1-GT – CAPN1-CC effect, kg 1.049 ± 0.246 1.153 ± 0.483 
   CAST-T additive effect, kg -1.257 ± 0.261 -0.902 ± 0.464 
   σg, kg 1.23 1.88 
   σe, kg 1.79 3.58 
   h2 0.32 0.22 
CAST genotype specific   
   CAPN1-GT – CAPN1-CC effect, kg 1.080 ± 0.224 1.081 ± 0.465 
   CAPN1-GC – ((CAPN1-CC + CAPN1-
GT)/2) effect, kg NA1 0.312 ± 0.417 

   CAST-T additive effect, kg -1.240 ± 0.341 -0.940 ± 0.553 
   σg, kg 1.23 1.88 
   σe-CC, kg 2.82 4.86 
   σe-CT, kg 1.99 3.98 
   σe-TT, kg 1.22 2.54 
   h2

CC 0.16 0.13 
   h2

CT 0.27 0.18 
   h2

TT 0.50 0.35 
NA1 = Not available because CAPN1-GC haplotype was not evaluated within Angus population 
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 Genotype specific residual variance models were more strongly supported for the CAST 
genotype specific residual variance models than the CAPN1 genotype specific residual variance 
models in both Angus (P = 2.5 × 10-4 vs. P = 0.05, respectively) and MARC III (P = 5.0 × 10-4 
vs. P = 0.03, respectively) populations (Table 1).  In both populations, the most tender CAST 
genotype (CAST-T homozygote) also had the smallest genotype specific residual variance 
(Table 2).  Furthermore, there was a progressive trend amongst CAST genotype specific residual 
variances where the more tough the expected mean, the larger the genotype specific residual 
variance (and hence phenotypic variance) (Figure 2).  In comparison, CAPN1 genotype specific 
residual variance models were not as strongly supported in Angus (P = 0.05) and MARC III (P = 
0.03) populations (Table 1) and the genotype with the smallest genotype specific residual 
variance was a different heterozygous genotype in each population (Tait et al., 2014a; Tait et al., 
2014b). 

 The economic value in the multi-trait selection objective for CAPN1 and CAST genetic 
markers should be driven by the risk of an animal with a particular genotype producing beef that 
is “tough” (above some SSF threshold).  Single residual variance models will have a different 
proportion of animals above some tough designation threshold than CAST genotype specific 
residual variance models and this could have important ramifications for selection emphasis on 
CAST markers depending on which distribution is assumed for the CAST genotypes. 

 The observation of CAST genotype specific residual variance models fitting significantly 
better than single residual variance models in replicated populations provides novel, powerful 
information about the CAST genetic effects on beef tenderness.  Additionally, the progressive 
nature of these residual variances where the most tender genotype has the smallest residual 
variance and the toughest genotype has the largest residual variance provides a unique 
opportunity for application or utilization of this marker.  This knowledge may someday be 
extended to national cattle evaluation programs by modeling tenderness to have a different 
heritability based on genotype at a single genetic marker. 
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Figure 2.  Additive effects of CAST genotype on LM slice shear force in Angus (A & B) and 
MARC III (C & D) populations under single residual variance model (A & C) or CAST genotype 
specific residual variance model (B & D).  Adapted from: A & B – Tait et al. (2014a) and C & D 
– Tait et al. (2014b) 
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MEAN EPDs REPORTED BY DIFFERENT BREEDS 
Larry A. Kuehn and R. Mark Thallman 

Roman L. Hruska U.S. Meat Animal Research Center, USDA-ARS, Clay Center, NE 68933 

 Expected progeny differences (EPDs) have been the primary tool for genetic 
improvement of beef cattle for over 40 years beginning with evaluations of growth traits.  Since 
that time, EPDs have been added for several other production traits such as calving ease, 
stayability, carcass merit and conformation.  Most recently, several breed associations have 
derived economic indices from their EPDs to increase profit under different management and 
breeding systems. 

It is useful for producers to compare the EPDs of potential breeding animals with their 
breed average.  The current EPDs from the most recent genetic evaluations of 26 breeds are 
presented in this report.  Mean EPDs for growth traits are shown in Table 1 (26 breeds), for other 
production traits in Table 2 (20 breeds), and for carcass and composition traits in Table 3 (21 
breeds).  Several breeds also have EPDs and indices that are unique to their breed; these EPDs 
are presented in Table 4.   

Average EPDs should only be used to determine the genetic merit of an animal relative to 
its breed average.  To compare animals of different breeds, across breed adjustment factors 
should be added to animals’ EPDs for their respective breeds (see Across-breed EPD Tables 
reported by Kuehn and Thallman in these proceedings).   

This list is likely incomplete; evaluations for some breeds are not widely reported. We 
are aware of recent EPD evaluations for the Blonde d’Aquitaine, North American Piedmontese, 
American Pinzgauer, and American Waygu breeds but their EPDs do not appear to have been 
updated in the last year.  If you see a breed missing and would like to report the average EPDs 
for that breed, please contact Larry (Larry.Kuehn@ars.usda.gov) or Mark 
(Mark.Thallman@ars.usda.gov).  
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Table 1.  Birth year 2014 average EPDs from 2016 evaluations for growth traits 

Breed 
Birth 

Weight (lb) 
Weaning 

Weight (lb) 
Yearling 

Weight (lb) 
Maternal 
Milk (lb) 

Total 
Maternal (lb) 

      
Angus 1.3 51 91 23  
Black Hereford 2.8 45.6 78.4 21.9 44.6 
Hereford 3.3 48.2 78.2 20.3 44.4 
Murray Grey 3.8 24 37 4 16 
Red Angus -1.3 57 88 20  
Red Poll 1.7 15 24 6  
Shorthorn 2.4 55 66 18 46 
South Devon 2.3 43.6 81.7 25.1 46.9 
      
Beefmaster 0.6 23 45 9 21 
Braford 1.1 12 18 3 9 
Brahman 1.8 16 25.6 5.6  
Brangus 1.2 24.4 46.5 9.5 21.7 
Red Brangus 1.7 12.1 19.4 5.5 11.6 
Santa Gertrudis 0.2 3.8 5.2 0.5  
Senepol 1.1 12 14.9 4.4 9.8 
Simbrah 3.7 60.0 81.3 21.9 51.8 
      
American Akaushi -0.1 24.0 44.4 26.3 38.3 
      
Braunvieh 2.7 44.4 68.0 34.6 56.8 
Charolais 0.5 26.7 48.7 8.7 22 
Chianina 2.3 43.3 63.1 15.3 37.0 
Gelbvieh 0.5 65.6 96.8 26.8 59.7 
Limousin 1.3 62.7 92.3 26.8 58.2 
Maine-Anjou 1.6 47.2 62.6 19.1 42.8 
Salers 1.8 41.0 78.3 19.9 40.4 
Simmental 1.9 63.4 92.5 21.6 53.3 
Tarentaise 1.3 17.5 30.8 0.7 9.4 
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Table 2.  Birth year 2014 average EPDs from 2016 evaluations for other production traits 

Breed 

Calving 
Ease 

Direct 
(%) 

Calving 
Ease 

Maternal 
(%) 

Scrotal 
Circ. 
(cm) 

Docil. 
Score 

Mature 
Weight 

(lb) 

Heifer 
Pregnancy 

(%) 
Stayability 

(%) 
        
Angus 5 8 0.84 14 31 10.6  
Hereford 1.1 1.3 0.8  87   
Murray Grey -0.6 -0.1 0.2  55   
Red Angus 5 4    10 11 
Shorthorn 5.0 1.0      
South Devon   0.1     
        
Beefmaster   0.4     
Brahman    0.0    
Brangus 3.8 4.1 0.45     
Simbrah 2.5 6.0  8.7    
        
American Akaushi 3.2 5.5      
        
Braunvieh 5.8 0.7 0.02     
Charolais 3.3 3.9 0.75     
Chianina 5.1 -3.2      
Gelbvieh 10.2 6.4    3.7 6.2 
Limousin 7.9 6.2 0.66 19.6   16.7 
Maine Anjou 7.6 2.4      
Salers 0.2 0.3 0.3 8.7   23.6 
Simmental 8.9 9.4  10.7   20.5 
Tarentaise -0.1 0.7      
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Table 3.  Birth year 2014 average EPDs from 2016 evaluations for carcass and composition traits 
 

Carcass 
Wt (lb) 

Retail 
Product 

(%) 
Yield 
Grade 

 Carcass  
Rump fat 

(in) 
WBSF 

(lb) Breed 
Marbling 

Score  
Ribeye Area 

(in2) 
Fat Thickness 

(in)  
         
Angus 33.0   0.59 0.53 0.017   
Hereford 61   0.09 0.31 0.003   

Murray Grey 32 0.4  0.0a 0.11a 0.00a 0.00a  
Red Angus 20  -0.01 0.45 0.13 -0.007   
Shorthorn 12.0   0.05 -0.05 -0.03   
South Devon 28.3 0.8  0.4 0.23 0.01   
         
Beefmaster    -0.10a -0.16a -0.01a   
Braford 7   0.01 0.06 0.012   
Brahman 1.4 -0.01  0.00 0.01 0.00  0.02 
Brangus    0.02a 0.34a -0.041a   
Santa Gertrudis 3.3   -0.01 0.04 0.002   
Simbrah 23.5  -0.23 -0.07 0.45 -0.060  -0.05 
         
American Akaushi    0.75a 0.11a 0.057a   
         
Braunvieh    0.56 0.35 -0.090   
Charolais 16.8   0.04 0.32 0.005   
Chianina 10.9 0.53  0.10 0.32 -0.06   
Gelbvieh 27.6  -0.18 0.09 0.45    
Limousin 26.3  -0.19 -0.01 0.48 -0.040   
Maine-Anjou 9.0 0.37  0.05 0.21 -0.041   
Salers 20.5 0  0.2 0.02 0.00   
Simmental 27.6  -0.33 0.14 0.79 -0.056  -0.33 
aDerived using ultrasound measures and reported on an ultrasound scale (IMF% instead of marbling score) 
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Table 4.  Birth year 2014 average EPDs from 2016 evaluations for other traits unique to individual breeds 

Angus 

Residual 
Average Daily 

Gain (lb) 
Mature 

Height (in) 
Yearling 

Height (in) 

Cow      
Energy  

Value ($) 

Weaned 
Calf     

Value ($)       
Feedlot 

Value ($) 
Grid  

Value ($) 
Beef     

Value ($) 
 0.21 0.4 0.5 -8.36 43.73 42.62 31.51 106.09 
         

Hereford 

 Baldy 
Maternal Index 

($) 

Brahman 
Influence 
Index ($) 

Certified 
Hereford Beef 

Index ($) 

Calving 
Ease Index 

($) Udder Score Teat Score 

  

 17.9 15.7 23.1 15.3 0.98 1.04   
         

Red Angus 
Mature Cow Maintenance 

(Mcal/mo) 
       

 0        
         

Gelbvieh 
30-Month 
Pregnancy DMI (lb/d) ADG (lb/d) RFI (lb/d) $ Cow ($) 

Efficiency 
Profit Index 

($) 

Feeder 
Profit Index 

($) 

 

 1.1 0.016 0.005 -0.010 61.11 101.81 69.51  
         

Limousin 
Mainstream Terminal 

Index ($) 
Gestation 
Length (d) 

      

 50.04 -2.1       
         

Simmental 
All Purpose 

Index ($) 
Terminal 
Index ($) 

 
Simbrah 

All Purpose 
Index ($) 

Terminal 
Index ($) 

   

 121 67.7   71.3 50.5    
          

Shorthorn $ Calving Ease $ Feedlot 
$ British Maternal 

Index   
   

 17.9 52.68 111      
         

Murray 
Grey 600-d wt (lb) 

Gestational 
Length (d) 

Days to 
Calving (d)   

   

 53 -0.2 -0.9      
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ACROSS-BREED EPD TABLES FOR THE YEAR 2016 ADJUSTED TO 
BREED DIFFERENCES FOR BIRTH YEAR OF 2014 

L. A. Kuehn and R. M. Thallman 

Roman L. Hruska U.S. Meat Animal Research Center, USDA-ARS, Clay Center, NE 68933 

Summary 

 Factors to adjust the expected progeny differences (EPD) of each of 18 breeds to the base 
of Angus EPD are reported in the column labeled 6 of Tables 1-8 for birth weight, weaning 
weight, yearling weight, maternal milk, marbling score, ribeye area, fat thickness, and carcass 
weight, respectively. An EPD is adjusted to the Angus base by adding the corresponding across-
breed adjustment factor in column 6 to the EPD. It is critical that this adjustment be applied only 
to Spring 2016 EPD. Older or newer EPD may be computed on different bases and, therefore, 
could produce misleading results. When the base of a breed changes from year to year, its 
adjustment factor (Column 6) changes in the opposite direction and by about the same amount. 

 Breed differences change over time as breeds put selection emphasis on different traits 
and their genetic trends differ accordingly. Therefore, it is necessary to qualify the point in time 
at which breed differences are represented. Column 5 of Tables 1-8 contains estimates of the 
differences between the averages of calves from sires of each breed born in year 2014. Any 
differences (relative to their breed means) in the samples of sires representing those breeds at the 
U.S. Meat Animal Research Center (USMARC) are adjusted out of these breed difference 
estimates and the across-breed adjustment factors. The breed difference estimates are reported as 
progeny differences, e.g., they represent the expected difference in progeny performance of 
calves sired by average bulls (born in 2014) of two different breeds and out of dams of a third, 
unrelated breed. In other words, they represent half the differences that would be expected 
between purebreds of the two breeds. 

Introduction 

 This report is the year 2016 update of estimates of sire breed means from data of the 
Germplasm Evaluation (GPE) project at USMARC adjusted to a year 2014 basis using EPD 
from the most recent national cattle evaluations. The 2014 basis year is chosen because yearling 
records for weight and carcass traits should have been accounted for in EPDs for progeny born in 
2014 in the Spring 2016 EPD national genetic evaluations. Factors to adjust Spring 2016 EPD of 
18 breeds to a common base were calculated and are reported in Tables 1-3 for birth weight 
(BWT), weaning weight (WWT), and yearling weight (YWT) and in Table 4 for the maternal 
milk (MILK) component of maternal weaning weight (MWWT). Tables 5-8 summarize the 
factors for marbling score (MAR), ribeye area (REA), fat thickness (FAT), and carcass weight 
(CWT). 

 The across-breed table adjustments apply only to EPD for most recent (spring, 2016) 
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national cattle evaluations. Serious errors can occur if the table adjustments are used with earlier 
or later EPD which may have been calculated with a different within-breed base. 

 The following describes the changes that have occurred since the update released in 2015 
(Kuehn and Thallman, 2015): 

 New samplings of sires in the USMARC GPE program continued to increase progeny 
records for all of the breeds. The GPE program has entered a new phase in which more progeny 
are produced from breeds with higher numbers of registrations. Breeds with large increases in 
progeny numbers as a percentage of total progeny included South Devon and Tarentaise 
(especially for yearling weight, carcass traits, and maternal milk) and Santa Gertrudis and 
Chiangus (especially for maternal milk).  However, all of the breeds continue to produce progeny 
in the project and sires continue to be sampled on a continuous basis for each of the 18 breeds in 
the across-breed EPD program. These additional progeny improve the accuracy of breed 
differences estimated at USMARC (column 3 in Tables 1-8) particularly for breeds with less data 
in previous GPE cycles (e.g., South Devon, Tarentaise, Santa Gertrudis, Chiangus).  

Materials and Methods 

 All calculations were as outlined in the 2010 BIF Guidelines. The basic steps were given 
by Notter and Cundiff (1991) with refinements by Núñez-Dominguez et al. (1993), Cundiff 
(1993, 1994), Barkhouse et al. (1994, 1995), Van Vleck and Cundiff (1997–2006), Kuehn et al. 
(2007-2011), and Kuehn and Thallman (2012-2015). Estimates of variance components, 
regression coefficients, and breed effects were obtained using the MTDFREML package 
(Boldman et al., 1995). All breed solutions are reported as differences from Angus. The table 
values of adjustment factors to add to within-breed EPD are relative to Angus. 

Models for Analysis of USMARC Records 

 An animal model with breed effects represented as genetic groups was fitted to the GPE 
data set (Arnold et al., 1992; Westell et al., 1988). In the analysis, all AI sires (sires used via 
artificial insemination) were assigned a genetic group according to their breed of origin. Due to 
lack of pedigree and different selection histories, dams mated to the AI sires and natural service 
bulls mated to F1 females were also assigned to separate genetic groups (i.e., Hereford dams 
were assigned to different genetic groups than Hereford AI sires). Cows from Hereford selection 
lines (Koch et al., 1994) were used in Cycle IV of GPE and assigned into their own genetic 
groups. Through Cycle VIII, most dams were from Hereford, Angus, or MARCIII (1/4 Angus, 
1/4 Hereford, 1/4 Pinzgauer, 1/4 Red Poll) composite lines. In order to be considered in the 
analysis, sires had to have an EPD for the trait of interest. All AI sires were considered unrelated 
for the analysis in order to adjust resulting genetic group effects by the average EPD of the sires. 

 Fixed effects in the models for BWT, WWT (205-d), and YWT (365-d) included breed 
(fit as genetic groups) and maternal breed (WWT only), year and season of birth by GPE cycle 
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by age of dam (2, 3, 4, 5-9, >10 yr) combination by any treatment combination where applicable, 
sex (heifer, bull, steer; steers were combined with bulls for BWT), a covariate for heterosis, and 
a covariate for day of year at birth of calf. Models for WWT also included a fixed covariate for 
maternal heterosis. Random effects included animal and residual error except for the analysis of 
WWT which also included a random maternal genetic effect and a random permanent 
environmental effect. 

 For the carcass traits (MAR, REA, FAT, and CWT), breed (fit as genetic groups), sex 
(heifer, steer) and slaughter date by any treatment combination where applicable were included 
in the model as fixed effects. Fixed covariates included slaughter age and heterosis. Random 
effects were animal and residual error. To be included, breeds had to report carcass EPD on a 
carcass (vs. ultrasound) basis using age-adjusted endpoints, as suggested in the 2010 BIF 
Guidelines. 

 The covariates for heterosis were calculated as the expected breed heterozygosity for 
each animal based on the percentage of each breed of that animal’s parents. In other words, it is 
the probability that, at any location in the genome, the animal's two alleles originated from two 
different breeds. Heterosis is assumed to be proportional to breed heterozygosity. For the 
purpose of heterosis calculation, AI and dam breeds were assumed to be the same breed and Red 
Angus was assumed the same breed as Angus. For purposes of heterosis calculation, composite 
breeds were considered according to nominal breed composition. For example, Brangus (3/8 
Brahman, 5/8 Angus) ⋅ Angus is expected to have 3/8 as much heterosis as Brangus ⋅ Hereford. 

 Variance components were estimated with a derivative-free REML algorithm with 
genetic group solutions obtained at convergence. Differences between resulting genetic group 
solutions for AI sire breeds were divided by two to represent the USMARC breed of sire effects 
in Tables 1-8. Resulting breed differences were adjusted to current breed EPD levels by 
accounting for the average EPD of the AI sires of progeny/grandprogeny, etc. with records. 
Average AI sire EPD were calculated as a weighted average AI sire EPD from the most recent 
within breed genetic evaluation. The weighting factor was the sum of relationship coefficients 
between an individual sire and all progeny with performance data for the trait of interest relative 
to all other sires in that breed. 

 For all traits, regression coefficients of progeny performance on EPD of sire for each trait 
were calculated using an animal model with EPD sires excluded from the pedigree. Genetic 
groups were assigned in place of sires in their progeny pedigree records. Each sire EPD was 
‘dropped’ down the pedigree and reduced by ½ depending on the number of generations each 
calf was removed from an EPD sire. In addition to regression coefficients for the EPDs of AI 
sires, models included the same fixed effects described previously. Pooled regression 
coefficients, and regression coefficients by sire breed were obtained. These regression 
coefficients are monitored as accuracy checks and for possible genetic by environment 
interactions. In addition, the regression coefficients by sire breed may reflect differences in 
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genetic trends for different breeds.  The pooled regression coefficients were used as described in 
the next section to adjust for differences in management at USMARC as compared to seedstock 
production (e.g., YWT of males at USMARC are primarily on a slaughter steer basis, while in 
seedstock field data they are primarily on a breeding bull basis). For carcass traits, MAR, REA, 
FAT, and CWT, regressions were considered too variable and too far removed from 1.00. 
Therefore, the regressions were assumed to be 1.00 until more data is added to reduce the impact 
of sampling errors on prediction of these regressions. However, the resulting regressions are still 
summarized. 

 Records from the USMARC GPE Project are not used in calculation of within-breed EPD 
by the breed associations. This is critical to maintain the integrity of the regression coefficient. If 
USMARC records were included in the EPD calculations, the regressions would be biased 
upward. 

Adjustment of USMARC Solutions 

 The calculations of across-breed adjustment factors rely on breed solutions from analysis 
of records at USMARC and on averages of within-breed EPD from the breed associations. The 
basic calculations for all traits are as follows: 

USMARC breed of sire solution (1/2 breed solution) for breed i (USMARC (i)) converted to an 
industry scale (divided by b) and adjusted for genetic trend (as if breed average bulls born in the 
base year had been used rather than the bulls actually sampled): 

 Mi = USMARC (i)/b + [EPD(i)YY - EPD(i)USMARC]. 

Breed Table Factor (Ai) to add to the EPD for a bull of breed i: 

 Ai = (Mi - Mx) - (EPD(i)YY - EPD(x)YY). 

where, 

 USMARC(i) is solution for effect of sire breed i from analysis of USMARC data, 

 EPD(i)YY is the average within-breed 2016 EPD for breed i for animals born in the base 
year (YY, which is two years before the update; e.g., YY = 2014 for the 2016 update), 

 

 EPD(i)USMARC is the weighted (by total relationship of descendants with records at 
USMARC) average of 2016 EPD of bulls of breed i having descendants with records at 
USMARC, 

 b is the pooled coefficient of regression of progeny performance at USMARC on EPD of 
sire (for 2016: 1.17, 0.81, 0.96, and 1.08 BWT, WWT, YWT, and MILK, respectively; 
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1.00 was applied to MAR, REA, FAT, and CWT data), 

 i denotes sire breed i, and 

 x denotes the base breed, which is Angus in this report. 

Results 

Heterosis 

 Heterosis was included in the statistical model as a covariate for all traits. Maternal 
heterosis was also fit as a covariate in the analysis of weaning weight. Resulting estimates were 
1.73 lb, 14.91 lb, 24.39 lb, -0.05 marbling score units (i.e. 4.00 = Sl00, 5.00 = Sm00), 0.26 in2, 
0.035 in, and 31.25 lb in for BWT, WWT, YWT, MAR, REA, FAT, and CWT respectively. 
These estimates are interpreted as the amount by which the performance of an F1 is expected to 
exceed that of its parental breeds. The estimate of maternal heterosis for WWT was 8.64 lb. 

Across-breed adjustment factors 

 Tables 1, 2, and 3 (for BWT, WWT, and YWT) summarize the data from, and results of, 
USMARC analyses to estimate breed of sire differences on a 2014 birth year basis. The column 
labeled 6 of each table corresponds to the Across-breed EPD Adjustment Factor for that trait. 
Table 4 summarizes the analysis of MILK. Tables 5, 6, 7, and 8 summarize data from the carcass 
traits (MAR, REA, FAT, and CWT). Because of the accuracy of sire carcass EPDs and the 
greatest percentage of data being added to carcass traits, sire effects and adjustment factors are 
more likely to change for carcass traits in the future. 

 Column 5 of each table represents the best estimates of sire breed differences for calves 
born in 2014 on an industry scale. These breed difference estimates are reported as progeny 
differences, e.g., they represent the expected difference in progeny performance of calves sired 
by average bulls (born in 2014) of two different breeds and out of dams of a third, unrelated 
breed. Thus, they represent half the difference expected between purebreds of the respective 
breeds. 

 In each table, breed of sire differences were added to the raw mean of Angus-sired 
progeny born 2011 through 2015 at USMARC (Column 4) to make these differences more 
interpretable to producers on scales they are accustomed to. 

 Figures 1-4 illustrate the relative genetic trends of most of the breeds involved (if they 
submitted trends) adjusted to a constant base using the adjustment factors in column 6 of Tables 
1-8. These figures demonstrate the effect of selection over time on breed differences; breeders 
within each breed apply variable levels of selection toward each trait resulting in reranking of 
breeds for each trait over time. These figures and Column 5 of Tables 1-8 can be used to identify 
breeds with potential for complementarity in mating programs. 
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Across-breed EPD Adjustment Factor Example 

 Adjustment factors can be applied to compare the genetic potential of sires from different 
breeds. Suppose the EPD for yearling weight for a Gelbvieh bull is +98.0 (which is above the 
birth year 2014 average of 96.8 for Gelbvieh) and for a Simmental bull is +89.0 (which is below 
the birth year 2014 average of 92.5 for Simmental). The across-breed adjustment factors in the 
last column of Table 3 are -29.3 for Gelbvieh and -12.1 for Simmental. Then the adjusted EPD 
for the Gelbvieh bull is 98.0 + (-29.3) = 68.7 and for the Simmental bull is 89.0 + (-12.1) = 76.9.  
The expected yearling weight difference when both are mated to another breed of cow, e.g., 
Hereford, would be 68.7 – 76.9 = -8.2 lb. The differences in true breeding value between two 
bulls with similar within-breed EPDs are primarily due to differences in the genetic base from 
which those within-breed EPDs are deviated. 

Birth Weight 

 The range in estimated breed of sire differences relative to Angus for BWT (Table 1, 
column 5) ranged from -0.1 lb for Red Angus to 7.2 lb for Charolais and 10.8 lb for Brahman. 
Red Angus had the lowest estimated sire effect for birth weight (Table 1, column 5). The 
relatively heavy birth weights of Brahman-sired progeny would be expected to be offset by 
favorable maternal effects reducing birth weight if progeny were from Brahman or Brahman 
cross dams which would be an important consideration in crossbreeding programs involving 
Brahman cross females. Changes in breed of sire effects were small and less than 1.0 lb for all 
breeds relative to last year’s update (Kuehn and Thallman, 2015).  

Weaning Weight 

 All of the 17 breed differences (Table 2, column 5) were within 6 lb of the values 
reported by Kuehn and Thallman. (2015). Otherwise, changes in breed effects for all 18 breeds 
seem to be stabilizing since continuous sampling started in 2007, with most minor year-to-year 
changes coming from selection progress in Angus (increases in the mean EPD each year). 

Yearling Weight 

  Breed of sire effects for yearling weight were also similar to Kuehn and Thallman (2015) 
in general.  Angus continued to have the greatest rate of genetic change for yearling weight (+3 
lb since last year), causing most breed of sire differences relative to Angus to decrease at least 
slightly. 

Maternal Milk 

 Changes to the maternal milk breed of sire differences (Table 4, column 5) were 
generally small. All changes were less than 4 lb difference from those reported in 2015. 
However, the breed solution estimates (Table 4, column 3) are expected to change the most in 
future updates as GPE heifers from each of the 18 breeds being continuously sampled are 
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developed and bred. Females from newly sampled South Devon or Tarentaise sires have 
continued to add progeny in this update; difference from Angus changed very little in these 
breeds. We would expect their solutions to change the most in future reports. 

 Marbling, Ribeye Area, Fat Thickness and Carcass Weight 

 Most changes to breed of sire differences were minor for each of these carcass traits.  
Salers had a decreased breed average in 2015, likely due to a processing error—this error seems 
to have been corrected this year.  The breed mean for marbling in Limousin seemed to increase 
(+0.06) relative to the average of the bulls in GPE (-0.9) resulting in a change in their breed 
difference since 2015.  Generally changes for other carcass traits were minor. 

Accuracies and Variance Components 

 Table 9 summarizes the average Beef Improvement Federation (BIF) accuracy for bulls 
with progeny at USMARC weighted appropriately by average relationship to animals with 
phenotypic records. The sires sampled recently in the GPE program have generally been higher 
accuracy sires, so the average accuracies should continue to increase over the next several years. 

 Table 10 reports the estimates of variance components from the animal models that were 
used to obtain breed of sire and breed of MGS solutions. Heritability estimates for BWT, WWT, 
YWT, and MILK were 0.55, 0.17, 0.43, and 0.15, respectively. Heritability estimates for MAR, 
REA, FAT, and CWT were 0.53, 0.47, 0.42, and 0.52 respectively.  

Regression Coefficients 

 Table 11 updates the coefficients of regression of records of USMARC progeny on sire 
EPD for BWT, WWT, and YWT which have theoretical expected values of 1.00. The standard 
errors of the specific breed regression coefficients are large relative to the regression coefficients. 
Large differences from the theoretical regressions, however, may indicate problems with genetic 
evaluations, identification, or sampling. The pooled (overall) regression coefficients of 1.17 for 
BWT, 0.81 for WWT, and 0.96 for YWT were used to adjust breed of sire solutions to the base 
year of 2014. These regression coefficients are reasonably close to expected values of 1.0. 
Deviations from 1.00 are believed to be due to scaling differences between performance of 
progeny in the USMARC herd and of progeny in herds contributing to the national genetic 
evaluations of the 18 breeds. Breed differences calculated from the USMARC data are divided 
by these regression coefficients to put them on an industry scale. A regression greater than one 
suggests that variation at USMARC is greater than the industry average, while a regression less 
than one suggests that variation at USMARC is less than the industry average. Reasons for 
differences in scale can be rationalized. For instance, cattle at USMARC, especially steers and 
market heifers, are fed at higher energy rations than some seedstock animals in the industry. 
Also, in several recent years, calves have been weaned earlier than 205 d at USMARC, likely 
reducing the variation in weaning weight of USMARC calves relative to the industry. 

133



 

8 
 

 The coefficients of regression for MILK are also shown in Table 11. Several sire (MGS) 
breeds have regression coefficients considerably different from the theoretical expected value of 
1.00 for MILK. Standard errors, however, for the regression coefficients by breed are large 
except for Angus and Hereford. The pooled regression coefficient of 1.08 for MILK is 
reasonably close to the expected regression coefficient of 1.00.  

 Regression coefficients derived from regression of USMARC steer progeny records on 
sire EPD for MAR, REA, FAT, and CWT are shown in Table 12. Each of these coefficients has 
a theoretical expected value of 1.00. Compared to growth trait regression coefficients, the 
standard errors even on the pooled estimates are higher, though they have decreased from the 
previous year. The MAR regressions were the most variable, possibly because the primary 
source of marbling variation in many of the breeds is ultrasound-estimated intramuscular fat 
which generally exhibits a lower level of variation.  While REA, FAT, and CWT are both close 
to the theoretical estimate of 1.00, we continued to use the theoretical estimate of 1.00 to derive 
breed of sire differences and EPD adjustment factors. Pooled regression estimates for these three 
traits may be used in future updates.  

Prediction Error Variance of Across-Breed EPD 

 Prediction error variances were not included in the report due to a larger number of tables 
included with the addition of carcass traits. These tables were last reported in Kuehn et al. (2007; 
available online at http://www.beefimprovement.org/content/uploads/2013/07/BIF-
Proceedings5.pdf). An updated set of tables is available on request (Larry.Kuehn@ars.usda.gov). 

Implications  

 Bulls of different breeds can be compared on a common EPD scale by adding the 
appropriate across-breed adjustment factor to EPD produced in the most recent genetic 
evaluations for each of the 18 breeds. The across-breed EPD are most useful to commercial 
producers purchasing bulls of two or more breeds to use in systematic crossbreeding programs. 
Uniformity in across-breed EPD should be emphasized for rotational crossing. Divergence in 
across-breed EPD for direct weaning weight and yearling weight should be emphasized in 
selection of bulls for terminal crossing. Divergence favoring lighter birth weight may be helpful 
in selection of bulls for use on first calf heifers. Accuracy of across-breed EPD depends 
primarily upon the accuracy of the within-breed EPD of individual bulls being compared. 
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Table 1. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 base 
and factors to adjust within breed EPD to an Angus equivalent – BIRTH WEIGHT (lb) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 196 2278 1.3 1.6 0.0 86.3 0.0 0.0 
Hereford 183 2565 3.3 2.4 3.6 90.6 4.3 2.3 
Red Angus 69 815 -1.3 -1.6 -0.8 86.2 -0.1 2.5 
Shorthorn 59 603 2.4 2.7 6.8 92.1 5.8 4.7 
South Devon 29 240 2.3 2.0 4.3 90.6 4.3 3.3 
Beefmaster 58 565 0.6 1.3 5.1 90.3 4.0 4.7 
Brahman 60 716 1.8 0.7 11.1 97.1 10.8 10.3 
Brangus 59 564 1.2 0.9 3.2 89.6 3.2 3.3 
Santa Gertrudis 29 334 0.2 0.6 5.5 90.9 4.6 5.7 
Braunvieh 36 492 2.7 4.2 5.4 89.7 3.3 1.9 
Charolais 124 1277 0.5 0.2 7.8 93.5 7.2 8.0 
Chiangus 30 357 2.3 2.1 4.3 90.5 4.2 3.2 
Gelbvieh 90 1159 0.5 2.1 3.9 88.3 2.0 2.8 
Limousin 86 1242 1.3 1.5 2.6 88.6 2.3 2.3 
Maine Anjou 51 583 1.6 2.2 5.7 90.9 4.5 4.2 
Salers 58 517 1.8 2.4 3.1 88.6 2.3 1.8 
Simmental 110 1320 1.9 3.1 5.5 90.1 3.8 3.2 
Tarentaise 17 291 1.3 2.1 4.6 89.7 3.4 3.4 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Recent Raw Angus Mean: 86.6 lb) with b = 1.17 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
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Table 2. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – WEANING WEIGHT (lb) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 196 2106 51.0 28.2 0.0 570.7 0.0 0.0 
Hereford 181 2373 48.2 29.6 -5.2 560.1 -10.6 -7.8 
Red Angus 69 781 57.0 52.5 -5.7 545.4 -25.4 -31.4 
Shorthorn 59 569 55.0 56.5 -6.8 538.1 -32.6 -36.6 
South Devon 29 219 43.6 28.4 -9.1 552.0 -18.8 -11.4 
Beefmaster 58 532 23.0 23.9 11.0 560.6 -10.1 17.9 
Brahman 58 621 16.0 7.5 19.8 580.8 10.1 45.1 
Brangus 59 534 24.4 21.3 4.1 556.1 -14.6 12.0 
Santa Gertrudis 29 315 3.8 6.5 11.8 559.8 -10.9 36.3 
Braunvieh 36 457 44.4 45.5 -6.7 538.6 -32.1 -25.5 
Charolais 123 1163 26.7 15.2 17.5 581.0 10.3 34.6 
Chiangus 30 320 43.3 46.5 -7.1 536.0 -34.7 -27.0 
Gelbvieh 90 1087 65.6 59.1 6.8 562.8 -8.0 -22.6 
Limousin 86 1142 62.7 45.6 -0.7 564.2 -6.5 -18.2 
Maine Anjou 51 541 47.2 46.0 -10.3 536.5 -34.3 -30.5 
Salers 58 491 41.0 34.8 -0.6 553.4 -17.3 -7.3 
Simmental 109 1209 63.4 57.1 15.8 573.7 3.0 -9.4 
Tarentaise 17 282 17.5 -0.5 -2.9 562.4 -8.4 25.1 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 548.0 lb) with b = 0.81 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
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Table 3. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – YEARLING WEIGHT (lb) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 
         

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 162 1834 91.0 50.3 0.0 1057.4 0.0 0.0 
Hereford 158 2170 78.2 48.9 -28.8 1016.1 -41.4 -28.6 
Red Angus 57 706 88.0 74.9 -9.7 1019.8 -37.6 -34.6 
Shorthorn 59 515 66.0 64.3 -3.2 1015.1 -42.3 -17.3 
South Devon 28 193 81.7 56.6 -20.0 1021.0 -36.4 -27.1 
Beefmaster 56 425 45.0 45.4 -4.2 1011.9 -45.5 0.5 
Brahman 56 564 25.6 13.2 -29.3 998.6 -58.8 6.6 
Brangus 57 433 46.3 39.1 -7.0 1016.7 -40.7 4.0 
Santa Gertrudis 24 291 5.2 9.9 2.4 1014.6 -42.8 43.0 
Braunvieh 33 441 68.0 70.9 -28.2 984.4 -73.0 -50.0 
Charolais 111 1061 48.7 29.9 19.2 1055.5 -1.9 40.4 
Chiangus 26 287 63.1 66.0 -23.9 989.0 -68.4 -40.5 
Gelbvieh 82 1020 96.8 77.9 -1.7 1033.9 -23.5 -29.3 
Limousin 76 1052 92.3 60.9 -29.5 1017.4 -40.0 -41.3 
Maine Anjou 51 506 62.6 61.8 -26.1 990.3 -67.1 -38.7 
Salers 52 466 78.3 67.0 -8.7 1019.0 -38.4 -25.7 
Simmental 88 1052 92.5 83.5 20.2 1046.8 -10.6 -12.1 
Tarentaise 17 254 30.8 2.7 -40.3 1002.8 -54.6 5.6 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 1016.7 lb) with b = 0.96 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
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aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
Table 4. Breed of maternal grandsire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the 
year 2014 base and factors to adjust within breed EPD to an Angus equivalent – MILK (lb) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Gpr Progeny (1) (2) (3) (4) (5) (6) 
Angus 143 3162 751 23.0 15.3 0.0 555.7 0.0 0.0 
Hereford 137 3812 932 20.3 10.9 -23.4 535.7 -20.0 -17.3 
Red Angus 48 1029 275 20.0 16.0 4.3 555.9 0.3 3.3 
Shorthorn 49 528 189 18.0 20.3 9.9 554.8 -0.9 4.1 
South Devon 24 378 90 25.1 20.2 9.5 561.7 6.0 3.9 
Beefmaster 46 443 138 9.0 9.2 -0.2 547.6 -8.1 5.9 
Brahman 56 865 252 5.6 7.1 16.9 562.1 6.4 23.8 
Brangus 46 414 125 9.5 6.4 -2.8 548.5 -7.2 6.3 
Santa Gertrudis 21 279 112 0.5 -1.6 0.1 550.2 -5.5 17.0 
Braunvieh 30 729 187 34.6 34.2 19.5 566.5 10.8 -0.8 
Charolais 97 1775 452 8.7 5.9 -1.3 549.6 -6.1 8.2 
Chiangus 24 268 112 15.3 14.6 -2.6 546.3 -9.4 -1.7 
Gelbvieh 74 1688 408 26.8 29.7 18.0 561.8 6.1 2.3 
Limousin 64 1933 438 26.8 25.2 -4.1 545.7 -9.9 -13.7 
Maine Anjou 43 740 201 19.1 19.3 -2.4 545.5 -10.1 -6.2 
Salers 47 626 201 19.9 19.2 10.5 557.6 2.8 5.9 
Simmental 78 1901 454 21.6 25.6 16.0 558.7 3.0 4.4 
Tarentaise 14 374 100 0.7 4.0 14.0 557.6 1.9 24.2 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 548.0 lb) with b = 1.08 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
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aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
Table 5. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – MARBLING (marbling score unitsa) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differenceb To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 145 831 0.59 0.23 0.00 5.88 0.00 0.00 
Hereford 154 1015 0.09 0.02 -0.52 5.07 -0.81 -0.31 
Red Angus 53 268 0.45 0.48 -0.02 5.47 -0.41 -0.27 
Shorthorn 57 267 0.05 0.03 -0.34 5.20 -0.68 -0.14 
South Devon 23 70 0.40 -0.06 -0.37 5.61 -0.27 -0.08 
Brahman 55 235 0.00 -0.01 -1.02 4.51 -1.37 -0.78 
Santa Gertrudis 24 139 -0.01 -0.02 -0.79 4.73 -1.14 -0.54 
Braunvieh 32 206 0.56 0.50 -0.43 5.14 -0.73 -0.70 
Charolais 66 329 0.04 -0.02 -0.58 5.00 -0.88 -0.33 
Chiangus 26 133 0.10 0.14 -0.43 5.05 -0.83 -0.34 
Gelbvieh 81 452 0.09 -0.24 -0.74 5.10 -0.77 -0.27 
Limousin 69 424 -0.01 -0.26 -0.92 4.85 -1.03 -0.43 
Maine Anjou 51 253 0.05 0.03 -0.77 4.77 -1.11 -0.57 
Salers 48 230 0.20 -0.37 -0.69 5.40 -0.48 -0.09 
Simmental 86 490 0.14 -0.01 -0.58 5.09 -0.79 -0.34 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 5.52) with b = 1.00 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
a4.00 = Sl00, 5.00 = Sm00 
bThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
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Table 6. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – RIBEYE AREA (in2) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 145 832 0.53 0.11 0.00 13.57 0.00 0.00 
Hereford 154 1015 0.31 -0.02 -0.20 13.28 -0.29 -0.07 
Red Angus 53 268 0.13 -0.07 -0.17 13.19 -0.39 0.01 
Shorthorn 57 267 -0.06 -0.09 0.17 13.35 -0.22 0.37 
South Devon 23 70 0.23 0.21 0.39 13.56 -0.01 0.29 
Brahman 55 240 0.01 0.05 -0.10 13.01 -0.57 -0.05 
Santa Gertrudis 24 140 0.04 0.02 -0.17 13.00 -0.58 -0.09 
Braunvieh 32 206 0.35 0.33 1.01 14.17 0.60 0.78 
Charolais 66 332 0.32 0.16 1.07 14.38 0.80 1.01 
Chiangus 26 134 0.32 0.18 0.41 13.70 0.13 0.34 
Gelbvieh 81 454 0.45 0.37 1.01 14.24 0.67 0.75 
Limousin 69 425 0.48 0.39 1.30 14.54 0.96 1.01 
Maine Anjou 51 253 0.21 0.20 1.07 14.22 0.65 0.97 
Salers 48 231 0.02 0.02 0.85 14.00 0.43 0.94 
Simmental 86 491 0.79 0.56 0.95 14.33 0.75 0.49 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 13.15 in2) with b = 1.00 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
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Table 7. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – FAT THICKNESS (in) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 145 832 0.017 0.003 0.000 0.677 0.000 0.000 
Hereford 154 1014 0.003 -0.003 -0.062 0.607 -0.070 -0.056 
Red Angus 52 266 -0.007 -0.010 -0.029 0.637 -0.040 -0.016 
Shorthorn 57 267 -0.033 -0.029 -0.136 0.522 -0.155 -0.105 
South Devon 23 70 0.010 0.008 -0.127 0.537 -0.140 -0.133 
Brahman 55 240 0.000 -0.002 -0.149 0.515 -0.162 -0.145 
Santa Gertrudis 24 140 0.002 0.003 -0.080 0.582 -0.095 -0.080 
Braunvieh 32 205 -0.090 -0.091 -0.186 0.478 -0.199 -0.092 
Charolais 66 331 0.005 0.006 -0.205 0.457 -0.220 -0.208 
Chiangus 26 133 -0.060 -0.024 -0.120 0.507 -0.170 -0.093 
Limousin 69 424 -0.040 -0.069 -0.203 0.488 -0.189 -0.132 
Maine Anjou 51 253 -0.041 -0.032 -0.221 0.433 -0.245 -0.187 
Salers 48 231 0.000 -0.007 -0.205 0.464 -0.213 -0.196 
Simmental 86 491 -0.056 -0.053 -0.185 0.475 -0.202 -0.129 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 0. 663 in) with b = 1.00 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
aThe breed difference estimates represent half the differences that would be expected between purebreds of the two breeds. 
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Table 8. Breed of sire solutions from USMARC, mean breed and USMARC EPD used to adjust for genetic trend to the year 2014 
base and factors to adjust within breed EPD to an Angus equivalent – CARCASS WEIGHT (lb) 

  Ave. Base EPD Breed Soln BY 2014 BY 2014 Factor to 
 Number Breed USMARC at USMARC Sire Breed Sire Breed adjust EPD 
 AI Direct 2014 Bulls (vs Ang) Average Differencea To Angus 

Breed Sires Progeny (1) (2) (3) (4) (5) (6) 
Angus 145 832 33.0 14.3 0.0 913.7 0.0 0.0 
Hereford 154 1015 61.0 42.9 -30.5 882.7 -31.0 -59.0 
Red Angus 53 268 20.0 12.4 -11.0 891.7 -22.0 -9.0 
Shorthorn 57 267 11.6 11.1 -10.4 885.2 -28.5 -7.1 
South Devon 23 70 28.3 15.3 -23.9 884.2 -29.5 -24.8 
Brahman 55 241 1.4 0.4 -41.7 854.4 -59.4 -27.8 
Santa Gertrudis 24 140 3.3 5.7 -6.4 886.2 -27.5 2.2 
Charolais 66 332 16.8 10.7 9.3 910.5 -3.2 13.0 
Chiangus 26 134 10.9 11.4 -21.1 873.5 -40.2 -18.1 
Gelbvieh 81 454 27.6 18.4 -10.9 893.4 -20.4 -15.0 
Limousin 69 425 26.3 6.6 -19.7 895.1 -18.7 -12.0 
Maine Anjou 51 253 9.0 10.2 -20.0 873.8 -39.9 -15.9 
Salers 48 232 20.5 15.5 -22.3 877.8 -36.0 -23.5 
Simmental 86 491 27.6 22.3 12.3 912.8 -1.0 4.4 
Calculations: 
(4) = (3) / b + [(1) – (2)] + (Raw Angus Mean: 895.1 lb) with b = 1.00 
(5) = (4) – (4, Angus) 
(6) = (5) – (5, Angus) – [(1) – (1, Angus)] 
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Table 9. Mean weighteda accuracies for birth weight (BWT), weaning weight (WWT), yearling 
weight (YWT), maternal weaning weight (MWWT), milk (MILK), marbling (MAR), ribeye area 
(REA), fat thickness (FAT), and carcass weight (CWT) for bulls used at USMARC 

Breed BWT WWT YWT MILK MAR REA FAT CWT 

Angus 0.82 0.80 0.75 0.75 0.55 0.55 0.53 0.53 

Hereford 0.68 0.65 0.64 0.61 0.32 0.44 0.35 0.56 

Red Angus 0.92 0.92 0.92 0.89 0.72 0.70 0.70 0.60 

Shorthorn 0.82 0.81 0.80 0.80 0.46 0.45 0.46 0.57 

South Devon 0.46 0.49 0.44 0.50 0.07 0.09 0.10 0.33 

Beefmaster 0.88 0.90 0.80 0.68     

Brahman 0.53 0.51 0.45 0.34 0.11 0.14 0.10 0.28 

Brangus 0.89 0.83 0.73 0.73    0.70 

Santa Gertrudis 0.73 0.69 0.58 0.56 0.42 0.49 0.51 0.46 

Braunvieh 0.63 0.56 0.32 0.50 0.11 0.18 0.09 0.18 

Charolais 0.82 0.76 0.69 0.70 0.47 0.50 0.44 0.45 

Chiangus 0.82 0.79 0.79 0.75 0.25 0.22 0.34 0.57 

Gelbvieh 0.85 0.84 0.84 0.82 0.63 0.58  0.56 

Limousin 0.94 0.93 0.93 0.92 0.66 0.65 0.66 0.61 

Maine Anjou 0.79 0.78 0.77 0.77 0.26 0.25 0.29 0.55 

Salers 0.82 0.82 0.76 0.79 0.28 0.31 0.36 0.61 

Simmental 0.94 0.94 0.94 0.93 0.72 0.71 0.71 0.60 

Tarentaise 0.92 0.91 0.90 0.88     
aWeighted by relationship to phenotyped animals at USMARC for BWT, WWT, YWT, MAR, 
REA, FAT, and CWT and by relationship to daughters with phenotyped progeny MILK. 
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Table 10. Estimates of variance components (lb2) for birth weight (BWT), weaning weight 
(WWT), yearling weight (YWT), and maternal weaning weight (MWWT) and for marbling 
(MAR; marbling score units2), ribeye area (REA; in4), fat thickness (FAT; in2), and carcass 
weight (CWT; lb) from mixed model analyses of USMARC data 
 
Analysis 

 
BWT 

 
WWTa 

 
YWT 

 
 

     
 Animal within breed (18 breeds) 69.19 489.50 3552.36  
 Maternal genetic within breed (18 breeds)  445.59   
 Maternal permanent environment  706.81   
 Residual 57.23 1306.33 4634.15  
     

Carcass Direct MAR REA FAT  CWT   
      
 Animal within breed (13-16 breeds)  0.288 0.670 0.0105 2382.21   
 Residual 0.258 0.764 0.0144 2170.34   
      

aDirect maternal covariance for weaning weight was -44.17 lb2 
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Table 11. Pooled and within-breed regression coefficients (lb/lb) for weights at birth (BWT), 205 
days (WWT), and 365 days (YWT) of F1 progeny and for calf weights (205 d) of F1 dams 
(MILK) on sire expected progeny difference and by sire breed 

 BWT WWT YWT MILK 
Pooled 1.17 ± 0.03 0.81 ± 0.03 0.96 ± 0.04 1.08 ± 0.06 

Sire breed     

Angus 1.13 ± 0.09 0.88 ± 0.06 1.12 ± 0.07 1.06 ± 0.15 

Hereford 1.18 ± 0.07 0.70 ± 0.05 0.98 ± 0.06 1.07 ± 0.14 

Red Angus 1.00 ± 0.13 0.70 ± 0.13 0.62 ± 0.15 1.18 ± 0.25 

Shorthorn 0.74 ± 0.18 0.51 ± 0.14 0.40 ± 0.17 0.63 ± 0.41 

South Devon -0.01 ± 0.39 0.97 ± 0.26 0.56 ± 0.30 1.22 ± 0.95 

Beefmaster 1.91 ± 0.27 0.76 ± 0.20 0.77 ± 0.32 8.24 ± 1.68 

Brahman 1.88 ± 0.21 1.13 ± 0.17 1.31 ± 0.21 0.66 ± 0.60 

Brangus 1.49 ± 0.22 0.80 ± 0.19 0.88 ± 0.17 0.82 ± 0.55 

Santa Gertrudis 3.16 ± 0.64 1.20 ± 0.23 1.16 ± 0.28 0.25 ± 1.00 

Braunvieh 0.79 ± 0.27 0.66 ± 0.28 0.32 ± 0.25 1.67 ± 0.62 

Charolais 1.09 ± 0.12 0.93 ± 0.10 0.87 ± 0.11 0.96 ± 0.21 

Chiangus 1.30 ± 0.25 0.28 ± 0.22 0.47 ± 0.26 0.34 ± 0.42 

Gelbvieh 1.11 ± 0.13 0.87 ± 0.10 1.16 ± 0.12 0.86 ± 0.23 

Limousin 1.08 ± 0.12 0.79 ± 0.07 0.86 ± 0.08 1.35 ± 0.21 

Maine Anjou 1.47 ± 0.16 0.90 ± 0.18 0.80 ± 0.23 1.86 ± 0.38 

Salers 1.31 ± 0.22 0.82 ± 0.24 0.64 ± 0.23 1.67 ± 0.35 

Simmental 1.15 ± 0.13 1.40 ± 0.12 1.31 ± 0.12 0.86 ± 0.28 

Tarentaise 1.21 ± 0.49 1.01 ± 0.21 1.39 ± 0.32 1.25 ± 0.80 
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Table 12. Pooled and within-breed regression coefficients marbling (MAR; score/score), 
ribeye area (REA; in2/in2), fat thickness (FAT; in/in), and carcass weight (CWT; lb) of F1 
progeny on sire expected progeny difference and by sire breed 

 MAR REA FAT CWT 
Pooled 0.53 ± 0.04 0.81 ± 0.05 0.91 ± 0.08 0.97 ± 0.06 

Sire breed     

Angus 0.78 ± 0.07 0.70 ± 0.12 0.98 ± 0.13 0.94 ± 0.10 

Hereford 0.73 ± 0.13 0.62 ± 0.12 1.01 ± 0.16 1.05 ± 0.11 

Red Angus 1.07 ± 0.15 1.12 ± 0.19 1.03 ± 0.34 1.08 ± 0.22 

Shorthorn 1.30 ± 0.25 0.75 ± 0.38 1.34 ± 0.47 0.50 ± 0.28 

South Devon -0.05 ± 0.19 2.06 ± 2.36 3.10 ± 2.38 -1.02 ± 0.86 

Brahman 1.70 ± 0.89 1.16 ± 0.33 0.97 ± 0.55 0.51 ± 0.23 

Santa Gertrudis 1.01 ± 0.64 0.77 ± 0.47 1.70 ± 0.82 1.21 ± 0.46 

Braunvieh -0.02 ± 0.50 0.58 ± 0.28 -1.93 ± 3.37 0.36 ± 0.39 

Charolais 1.03 ± 0.18 0.86 ± 0.16 1.32 ± 0.34 0.88 ± 0.26 

Chiangus 0.70 ± 0.19 0.37 ± 0.45 0.67 ± 0.37 0.62 ± 0.42 

Gelbvieh 1.15 ± 0.17 1.29 ± 0.16  1.49 ± 0.18 

Limousin 1.08 ± 0.25 0.82 ± 0.13 1.07 ± 0.28 0.85 ± 0.13 

Maine Anjou -0.43 ± 0.48 -0.61 ± 0.49 -0.54 ± 0.50 1.36 ± 0.31 

Salers 0.04 ± 0.06 1.35 ± 0.52 0.79 ± 0.51 0.74 ± 0.43 

Simmental 0.94 ± 0.15 0.70 ± 0.14 0.19 ± 0.28 1.55 ± 0.20 
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Figure 1. Relative genetic trends for birth weight (lb) of the seven most highly used beef breeds 
(1a) and all breeds that submitted 2016 trends (1b) adjusted for birth year 2014 using the 2016 
across-breed EPD adjustment factors. 
1a. 

 
1b. 
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Figure 2. Relative genetic trends for weaning weight (lb) of the seven most highly used beef 
breeds (2a) and all breeds that submitted 2016 trends (2b) adjusted for birth year 2014 using the 
2016 across-breed EPD adjustment factors. 
2a. 

 
2b. 
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Figure 3. Relative genetic trends for yearling weight (lb) of the seven most highly used beef 
breeds (3a) and all breeds that submitted 2016 trends (3b) adjusted for birth year 2014 using the 
2016 across-breed EPD adjustment factors. 
3a. 

 
3b. 
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Figure 4. Relative genetic trends for maternal milk (lb) of the seven most highly used beef breeds 
(4a) and all breeds that submitted 2016 trends (4b) adjusted for birth year 2014 using the 2016 
across-breed EPD adjustment factors. 
4a. 

 
4b. 
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Breeding Objectives Indicate Value of Genomics for Beef Cattle 

M. D. MacNeil, Delta G 

 
Introduction 

 A well-defined breeding objective provides commercial producers a mechanism for 
extracting value from the investment in genomics by seedstock producers. Advantages of 
genomic prediction include increased accuracy of expected progeny differences (EPDs) for traits 
that have been components of routine genetic evaluations. Perhaps more importantly, genomic 
prediction makes it possible to include traits that are too costly or too difficult to measure, and 
traits that are measured too late in life or are sex-limited such that candidates for selection cannot 
have EBV with high accuracy at the time when selection decisions are made. Genomically 
enhanced EPDs may also allow for a marked reduction in generation interval, thus accelerating 
the annual rate of genetic improvement. Here, the value of genomic prediction, on a trait by trait 
basis, is extended to explore the contribution of genomic prediction to selection for a multi-trait 
breeding objective indicative of economic merit. A simple two-trait objective indicative of feed 
efficiency is illustrated first, followed by objectives for terminal and maternal strains of Angus. 

Materials and Methods 

 The conceptual model employed to incorporate of genomic information into multiple-trait 
economic breeding objectives is shown in Figure 1.  

	
Figure 1. Conceptual model employed to incorporate of genomic information into multiple-trait 
economic breeding objectives.  

 True genetic values for each of n, possibly correlated traits, are the cause of differences in 
both genomic and phenotypic estimated breeding values gEBV and pEBV, respectively. The 
separate EBVs are then merged (blended) as a function of their respective accuracies to produce 
an EPD for each of the n traits. Finally, for each animal the sum of products of economic weights 
and EBV is calculated to predict its economic value. Formally, a breeding objective (O) reflects 
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the functional relationship between breeding values (BV) of biological traits and profit (e.g., O = 
a1BV1 + a2BV2 + a3BV3 …; where ai is economic value of the ith economically relevant traits. 
Implementing a breeding objective depends on a genetic evaluation system such that: Ô = 
a1EPD1 + a2EPD2 + a3EPD3 … By definition economic values are the change in profit that is 
expected from a single unit change in the associated trait, holding all other traits constant.  

 Here, three distinct objectives are evaluated: 1) feed efficiency, a linear transformation of 
the ratio of postweaning average daily gain to feed intake; 2) a terminal objective based on work 
for the Circle A Angus Sire Alliance; and 3) a maternal objective also for Angus. A series of 
differing accuracies of the EBV components of the feed efficiency objective were evaluated. 
Shown here are results calculated for accuracies of the EBV quartet [pEBV1, gEBV1, pEBV2, 
gEBV2] of [0.50, 0.00, 0.61, 0.00], [0.50, 0.40, 0.61, 0.40], [0.50, 0.60, 0.61, 0.60], [0.60, 0.40, 
0.70, 0.40], and [0.60, 0.60, 0.70, 0.60].   

 For the terminal sire objective, economic weights were calculated by simulation based 
data from Angus calves born during a 4-month spring calving season and weaned at an average 
age of 192 days. After weaning, the calves were fed a diet of moderate energy density for an 
average of 106 d before transport to a feedlot for finishing. Daily feed intake of individual 
animals was measured in contemporary groups of 96 steers using a Calan Broadbent Feeding 
System. A stepwise series of five diets that increased in energy density were used throughout the 
finishing period. Harvest date was determined to target a contemporary group to average 1.3 cm 
fat depth at the 12-13 rib and/or to avoid discounts for under- and over-weight carcasses. The 
afternoon before harvest, steers were weighed and then transported overnight to the packing 
plant for harvest and collection of carcass data. Carcass data included: harvest date, hot carcass 
weight, marbling score, fat depth, LM area, and percentage kidney, pelvic and heart fat. The 
terminal breeding objective is described by statistics presented in Table 1. 

 

Table 1. Estimates of mean (µ), phenotypic standard deviation (σ), heritability (h2), economic 
weights (∂P/∂t), and accuracies for traits (t) included in an Angus terminal sire breeding 
objective. 

Trait µ σ h2 ∂P/∂t 
relative 

value, % 
accuracya 

gEBV pEBV 
Birth weight, lb. 77.9 11.0 0.41 -0.85 8.8 0.68 0.76 
Weaning weight, lb. 427. 86.9 0.23 0.41 25.4 0.56 0.66 
ADG, lb./d 2.90 0.40 0.36 47.40 16.9 0.66 0.60 
DFI, kg/d 20.2 2.20 0.41 -10.02 21.1 0.74 0.56 
Marbling scoreb 5.8 1.00 0.26 13.54 10.3 0.67 0.59 
Yield grade 3.4 0.70 0.22 -35.28 17.4 0.65 0.57 
a gEBV = genomic EBV; pEBV =  phenotypic EBV 
b 4.0 = Slight00; 5.0 = Small00; etc. 
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 The maternal objective considered Angus as a specialized dam line used in a 2-breed 
rotation crossbreeding system wherein income was derived from calves sold at weaning. Here 
the simulation described progression of the cows through their life cycle as a function of age-
specific mortality and reproduction. As with the terminal objective, spring-born calves were 
weaned at 192 days of age. The maternal breeding objective is described by statistics presented 
in Table 2. 

Table 2. Estimates of mean (µ), phenotypic standard deviation (σ), heritability (h2), economic 
weights (∂P/∂t), and accuracies for traits (t) included in a breeding objective for an Angus 
specialized dam line. 

Trait µ σ h2 ∂P/∂t 
relative 
value, % 

accuracya 
gEBV pEBV 

Stayability, % 55.1 16.2 0.21 8.00 50.6 0.58 0.37 
Heifer pregnancy, % 91.0 22.6 0.14 1.61 11.6 0.45 0.31 
Calving ease (d), % 85.5 28.6 0.12 1.90 16.0 0.62 0.65 
Calving ease (m), % -  0.13 1.90 16.7 0.32 0.46 
Weaning weight (d), lb. 564.7 109.1 0.30 0.086    4.4 0.56 0.66 
Weaning weight (m), lb. -  0.14 -0.023   0.8 0.36 0.51 
a gEBV = genomic EBV; pEBV =  phenotypic EBV 

 For each breeding objective two scenarios were simulated: 1) where the accuracies of 
both the phenotypic and genomic EBV were as presented in Tables 1 and 2; and 2) where the 
accuracies of the genomic EBV were = 0.0. Accuracy estimates for the phenotype-based EPD 
were from a 2015 Angus national cattle evaluation for 2014 bulls that were not genotyped. Thus, 
the accuracies of the EBV were approximate those available for choosing among yearling bulls. 

 Finally, the “Breeder’s equation”: 𝑅 = ℎ𝜎%𝑖, wherein, 𝑅 = response to selection, ℎ = 
square root of heritability or accuracy, 𝜎%= genetic standard deviation, and 𝑖 = selection intensity 
was used to assess selection response as a function of changes in accuracy due to the addition of 
genomic information to traditional phenotype-based predictions of genetic merit.  

Results and Discussion 

 The five scenarios analyzed for the feed efficiency objective reflect meaningful 
circumstances. In scenarios 1-3, accuracies of the pEBV equal the square roots of the 
corresponding heritability estimates. Thus, the EBV are assumed to be based only on individual 
performance records. In scenarios 4 and 5, the accuracies of the pEBV were increased to reflect 
the addition of records from sibs. Accuracies of the gEBV were selected to reflect no genomic 
information (scenario 1), modest accuracy gEBV (scenarios 2 and 4), and higher accuracy gEBV 
(scenarios 3 and 5). Higher accuracy pEBV were not considered as it is thought to be unlikely 
that greater levels of accuracy could be attained prior to the time selection decisions are typically 
made. Adding genomic information improved accuracy of the feed efficiency EPD when only 
the individual phenotypes were available. However, as the accuracy of phenotypic information 
contributing to the feed efficiency EPD increased, the value of genomic information became 
negligible.  
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 For individual traits in the terminal objective, selection response is increased through the 
use of genomic predictors by 9% to 41% with the least effect on birth weight and the greatest 
effect on dry matter intake.  In general, these effects were greater on postweaning traits that are 
less frequently recorded and(or) monitored with indicator traits. For individual traits in the 
maternal objective, selection response is increased through the use of genomic predictors by 12% 
to 76% with by far the greatest effects on stayability and heifer pregnancy, traits that are 
unobserved on bull candidates for selection at the time when the selection decisions are typically 
reached 

 Use of breeding objectives allows consequences of incorporating genomic information to 
be translated into economic terms. Assume the classical pyramid paradigm for flows of genetic 
and economic signals in the beef industry. Conceptually, the industry is divided into two 
segments. One, a seedstock or stud breeding sector wherein data recording and subsequent 
genetic evaluation facilitate genetic improvement that results in enhanced profitability for the 
commercial producers that form the second segment. These commercial producers benefit from 
the selection decisions that have been made by stud breeders and reward them for the enhanced 
genetic merit of the stock that they sell for use in commercial production. Here, assume that in 
the seedstock segment 5% of bulls and 30% of heifers are retained for breeding. The value of 
incorporating genomic information into EBVs that are components of multiple-trait breeding 
objectives for Angus cattle is illustrated in Figure 2. Other things being equal, these results 
indicate selection response for economic merit would be increased 1.25- and 1.56-fold by 
including genomic information in the EBV in the two objectives, respectively. In economic 
terms, adding genomic information to the prediction of EBV yields $11.55 for the terminal index 
and $50.85 for the maternal objective. If an individual terminal sire were to produce say 60 
commercial progeny, then the expected net increase would total $346.50 and a maternal sire 
producing 15 replacement females add $326.00 to the bottom line of the cow-calf producer. 

 

Figure 2. Effect of adding genomic information to traditional phenotype-based EBV on the 
accuracy of breeding objectives for selection of beef cattle as specialized sire (terminal) and dam 
(maternal) lines.	
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Implications 

 Genomically enhanced EBVs are more accurate predictors of merit than traditional EBV. 
These increases in accuracy can yield economic returns in commercial production that are more 
than sufficient to offset the cost of genotyping by the seedstock producers.	
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Using Genomic Tools in Commercial Beef Cattle: Taking Heifer Selection to the Next Level 

Tom Short, PhD, Zoetis, Florham Park, NJ 

 

Introduction 

 The use of genomic technology is revolutionizing beef cattle evaluation and selection. 
High density genotyping and integration into national cattle evaluations are further bending the 
genetic improvement curve. While up until now these advancements in technology have been 
primarily used in the seedstock industry, opportunities now exist for use in commercial beef 
herds. A fundamental decision facing commercial producers is selection of replacement females 
and as the U.S. beef herd rebuilds, it is important to select heifers with the highest genetic 
potential as brood cows.  

 Utilizing available genomic testing and the multiple-trait, economic based indexes that 
accompany these tests offer producers an opportunity to select heifers for optimum lifetime 
improvement at a very young age and affordable price. This approach may be used in 
conjunction with, or as a replacement for traditional selection methods based on visual appraisal, 
first born, heaviest at weaning or dams performance. As a result it allows for a more balanced 
and desired response across traits instead of the potential consequences of selection based 
predominantly on visual appraisal. It follows that understanding anticipated multi-trait response 
to selection and associated sources of value return are important for adoption of this technology 
by commercial cow-calf producers. 

Development of GeneMax Advantage 

 In 2014 in collaboration with Angus Genetics Inc. and Certified Angus Beef, Zoetis 
released GeneMax Advantage to the beef industry. Advantage is a genomic test that is applicable 
to beef females that are ≥ 75% Black Angus composition. Advantage was originally developed 
using over 39,000 Angus seedstock animals tested with HD50K molecular breeding values 
(MBV) that were a part of National Cattle Evaluation for registered Angus cattle conducted by 
the American Angus Association. This platform was used as the foundation for Advantage 
because it contains the most reliable genomic predictions for maternal, growth and carcass traits 
available for Angus cattle.  

 Table 1 shows the most recently estimated correlations between MBV and the respective 
phenotypic data from the latest Angus validation (American Angus Association and Angus 
Genetics Inc, 2016). These correlations range from .37 to .80, with the higher correlation 
indicating a stronger relationship between the molecular predictions and the phenotypic data. 
Explained variation, the proportion of additive genetic variability explained by the molecular 
predictions and calculated as the square of the correlation, ranges from .14 to .64 with an average 
of .44 across all evaluated traits. Approximate progeny equivalents (not shown) from these 
correlations range from 6 for carcass weight up to 23 for yearling weight.  
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Table 1. Correlations between molecular breeding values and phenotypic data in the most 
recent Angus validation1. 

Trait Correlation  Trait Correlation  Trait Correlation 
CED .67  SC .80  CWT .60 
BW .69  DOC .68  MARB .65 

WWT .56  HP .62  REA .68 
YWT .68  MILK .37  FAT .65 
DMI .73  MWT .74    
YHT .75  MHT .71    

1Based on validations including >108,000 head. 
Source: American Angus Association and Angus Genetics Inc. 2016. 
 
 The foundation of Advantage are MBV for commercial heifers based upon a strategically 
developed assay and imputation to the Zoetis custom HD Illumina platform used for the 
registered Angus population. These MBV are predicted for thirteen traits and then consolidated 
into three bio-economic indexes that can be used for heifer selection, mating and marketing 
decisions. Advantage indexes were derived using simple selection index methodology and 
economic assumptions used by AGI in the economic ($) indexes available to both breeders and 
commercial cow-calf users of Angus genetics. Relative economic values for each trait were 
modeled by considering both costs and returns for each stage of production using deterministic 
modeling and all inputs in the economic modeling (costs and returns) are based on three-year 
rolling averages (American Angus Association, 2016; Beal, 1998; Beal, 1998b; CattleFax, 2014; 
Fox et al., 1988; McCorkle and Bevers, 2009; NRC, 2000). 

 The indexes offered with Advantage are Total - encompassing traits from conception to 
carcass, Cow - which includes traits associated with maternal and reproductive performance, and 
Feeder - which includes traits associated with post-weaning gain, efficiency and carcass 
attributes valued on a quality grade based grid. In addition to the three indexes, outlier reporting 
is also provided for four traits: marbling, tenderness, docility and cow cost. Relative trait 
weightings for the trait groupings are shown in Figure 1. Maternal traits included in the Total 
index include heifer pregnancy rate, calving ease maternal and mature size. Growth and intake 
traits include weaning and yearling weight and dry matter intake. Carcass related traits include 
carcass weight, ribeye area, fat, and marbling. As shown in Figure 1, the Total index is 
reasonably balanced across trait areas, whereas the Cow Advantage index places emphasis on 
maternal traits that impact number of calves, weaned calf weight and costs associated with milk 
and cow size. The Feeder Advantage index places roughly 60% emphasis on growth and feed 
intake and 40% on carcass traits. 

Figure 1. Relative contribution of trait categories for Advantage Total, Cow and Feeder 
indexes. 
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 Annually, relative economic weights are re-estimated using updated economic costs and 
returns. Now that sufficient genotypes are available on commercial heifers, MBV are used from 
this population in the model to estimate relative economic values. These values are more 
indicative of the commercial population in which results will be utilized and tend to show less 
genetic variability than parameters from the registered genotyped animals. Once final index 
values are calculated on their underlying economic scale, they are transformed to a normally 
distributed 1 to 100 point score with 50 representing the mean of the tested commercial Angus 
heifer population. 

Potential Genetic Improvement 

 Using genetic parameters estimated from 37,519 animals with genotypes prior to March, 
2016, potential genetic improvement has been estimated for individual traits and overall 
economic value. Assumptions are that two-thirds of heifers of a given heifer-calf crop are 
genomically tested, that 45% of tested heifers are then selected as replacements based on the 
Total Advantage index, and for the purpose of estimating potential genetic improvement, that 
males (service sires) are HD-50K tested and selected using the same index and represent bulls 
from the top 25% of the seedstock population. Using these assumptions annual economic 
improvement of $7.26 is theoretically possible. Figure 2 shows potential genetic improvement 
from continual selection for Total Advantage index over a 5 year period. Using an index that is 
weighted according to economic value of the respective traits results in a small but balanced 
response in generally the desired direction for all traits considered. 

Figure 2. Potential standardized cumulative genetic change over a five year period of 
continual selection based on Total Advantage index. 

 

 

Value of Genomic Testing  

 As with any investment in a new practice or technology, producers have to consider the 
potential return on their investment. Cost has to be weighed against potential returns to assess 
whether or not to utilize the new technology. Major considerations for a cow-calf producer 
include deciding whether a genetic investment will impact the number of live calves per exposed 
female, increase the number and weight of weaned calves or reduce replacement rates by 
decreasing involuntary culling of cows. If improvements in output can be attained while either 
maintaining or reducing feed requirements, the net result should be beneficial. 
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 Using similar assumptions to predicting possible rate of genetic gain, the value return to 
commercial cow-calf users of GeneMax Advantage technology for replacement heifer selection 
was estimated. Along with testing and selection rates described above, it was assumed that 
selected heifers produce 6 calves lifetime and testing cost is $39/head. Revenue is generated 
from selected females and their descendants (retained daughters’ and their marketed progeny, as 
well as marketed steer and heifer progeny) and is discounted at a rate of 6% back to year one in 
which testing costs were incurred. The inclusion of descendants is important because a key 
component of genetic improvement is the transmission of favorable genes to an animal’s 
offspring. Selection intensity in each generation of descendants was assumed to be equivalent to 
that of the original selected heifers.  

 In the first year, only testing costs are incurred from both selected and culled heifers and 
no revenue is generated. Beginning in year 2 and continuing through year 7, revenue is generated 
through the selected heifers’ offspring (6), grand-offspring from daughters (up to 10) and great-
grand-offspring from grand-daughters (up to 3). Figure 3 depicts annual cumulative returns to the 
original investment of genomically tested candidate heifers.  

Figure 3. Discounted lifetime returns generated from the initial genomic testing investment. 

 

 In the scenario considered, break even occurs between years 3 and 4 in the original tested 
heifer’s lifetime. Revenues increase considerably from years 4 through 7, where descendants also 
significantly contribute to total value and demonstrate the added value of this technology to 
future generations.  Under assumptions considered here, there is a potential of approximately 
$300 additional lifetime profit per female from a more informed heifer selection decision.  

 To put this into perspective, a $39 test cost is approximately $15 more than what would 
be spent on a typical vaccination and deworming program on a replacement heifer up until her 
first calving and represents about 43% of what would be spent on her health protocol through six 
calving crops. Preventative health management is an integral part of minimizing risk and 
optimizing cow lifetime productivity and genomic testing provides an additional tool to identify 
replacement heifers with the highest potential lifetime productivity. 

Other Potential Uses of the Genomic Results 

 Another practical feature of this technology is Sire Match where registered HD-50K and 
i50K tested bull batteries are specifically matched to daughters that originated from multi-sire 
pastures and or AI sires. This can then also be used to either manage inbreeding and associated 
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impacts on reproductive, fitness and survival traits as well as for corrective mating to optimally 
match the heifers and potential breeding sires’ strengths and weaknesses.  

 In addition to using results to select and mate replacement heifers, there are other 
potential uses of genomic testing of commercial heifers. For example, where more heifers are 
tested than needed, excess heifers can be marketed to other producers as value added 
replacements. In the case of custom heifer growers, genomic tests and their accompanying index 
rankings may be used to price heifers accordingly. The Show Me Select program in Missouri is 
an example of where genomic information is being used to market replacement heifers at a 
premium compared to non-tested heifers (Decker, 2016).  

 Likewise when combined with bull battery GE-EPD information, the steer/herd mates 
and or progeny of tested and selected heifers and cows now possess more documented genetic 
merit for post-weaning feedlot gain, feed efficiency and carcass performance, and increasingly 
may be sold as value added feeder calves through programs such as Reputation Feeder Cattle and 
Top Dollar Angus (http://reputationfeedercattle.com; http://www.topdollarangus.com). These 
programs are conduits through which commercial cow-calf adopters of genomic technology can 
derive greater immediate returns from their investment in testing and begin to change traditional 
paradigms associated with feeder cattle price discovery. 

Summary 

 Genomic testing is now becoming more widely available to the commercial beef industry 
to help make more informed decisions associated with the replacement heifer enterprise. While 
tests are available to more accurately identify heifers with highest genetic merit for maternal, 
feedlot performance and carcass characteristics at a very young age, it is important to understand 
the amount of genetic variation explained in the tested population and the sources of value return 
from the investment in testing.  These sources of return include more informed selection and 
culling decisions, lifetime complimentary mating decisions (and associated bull/semen buying), 
as well as the more immediate impact of feeder cattle price discovery. 

 The technology presented here offers producers valuable information based on arguably 
the most accurate genomic predictions available to the beef industry for the target population of 
seventy-five percent and higher Black Angus replacement heifer candidates. Depending upon the 
producers’ goals, different economic selection indexes more correctly identify replacement 
heifers to fit their production system and generate higher lifetime net returns. If these indexes are 
used on an ongoing basis along with intense sire selection, significant genetic improvement and 
expressed productivity can be achieved. Genetic improvement is a long-term investment and 
utilization of tools such as genomic selection can help mitigate risks and increase the opportunity 
for better performance and financial returns to commercial beef producers. 
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Genomics: Return on Investment - Fact or Fiction? 

Tonya Amen, Michael Bishop, Andre Eggen 
Illumina, Inc. 

 
Introduction 

 For nearly a decade, genomic technology has been incorporated into selection decisions 
made in the livestock industry.  Genomic technology can be used in livestock production (cattle) 
in several ways: 1) accelerating  genetic progress by increasing selection pressure through the 
use of genomically-tested seedstock, 2) selecting for difficult to measure traits (feed intake, etc.) 
3) selecting replacement heifers at both the commercial and seedstock level, 4) marketing and 
selling pedigreed livestock at premium prices, 5) determining parentage  in multiple sire pastures 
and for sire/dam verification for increased accuracy in genetic predictions, 6) monitoring genetic 
mutations to avoid economic losses from affected progeny,   7) developing  and deploying 
mating plans to achieve genetic gain while controlling inbreeding and 8) combining genomics, 
EPDs and reproduction technologies (IVF-MOET, Embryo Transfer, single cell analysis on 
embryos) to rapidly accelerate genetic change and reduce generation interval.  The rate of 
adoption of genomic technology has varied between livestock species, as well as between breeds 
and segments within the species.   Initially, adoption was primarily hindered due to cost, efficacy 
of the tests and scope of the traits available for genomic selection.   

 Today, for most species and many breeds within those species, moderately efficacious 
tests are utilized across a wide variety of traits, however the debate still exists on how to 
determine when the technology is economically beneficial for the end-user producer. This paper 
will discuss the application of genomic technology and potential return on investment (ROI) for 
the various phases of the U.S. beef cattle industry: seedstock, commercial/cow-calf, and feed 
yard.  While many of the published ROI examples are from dairy, it is expected that similar 
thoughts can be applied to beef and several research groups are working toward that end. 

How does genomic analysis pay? 

 The potential streams for return on investment for genomic technology can be sorted into 
two categories, increases in profit due to genetic improvement and increases in profit unrelated 
to genetic improvement.   

 In order to recognize a return on investment due to genetic improvement, more rapid 
genetic progress must be made through manipulating the variables impacting the rate of genetic 
change (accuracy of selection, selection intensity, generation interval, and genetic variation 
(Figure 1)) and/or realizing cost savings due to decreased expenses associated with retaining 
breeding animals or gains in efficiency due to performance.  Items unrelated to genetic 
improvement, but that may provide a return for investing in genetic technology are making better 
mating decisions and marketing animals. 
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Figure 1: Variables Impacting Rate of Genetic Change 

Seedstock 

 Early on, the return on investment for genomic testing was recognized in the dairy 
industry.  

 In their model of the German dairy industry, König et al. (2009) showed the economic 
advantage in various genomic breeding programs compared to the conventional progeny-test 
breeding program that was typical at the time.  Genomic breeding programs considered costs of 
genotyping, selection intensity, degree of use of young sires with genotypes only compared to 
young bulls with some daughter records, and different accuracies for genomic indexes for bulls 
and cows. In all scenarios considered, genomic breeding programs offered 1.36 to 2.59 times the 
economic advantage over a traditional program.  This assumed that the accuracy of genomic 
EBVs was at least .7, which would be equivalent to about .29 for BIF accuracy. This is less than 
the accuracy attained by genomic-enhanced EPDs currently offered by most beef breed 
associations.   

 Similarly, in a small, Dutch dairy population, Thomasen et al., (2014) showed that all 
genomic selection scenarios (one a hybrid system using both progeny-tested bulls and young 
genomically-tested bulls and the other a system using only young, genomically-tested bulls) 
were superior to the conventional progeny-test system from a profit standpoint. 

 In beef cattle in Australia, Van Eenennaam et al. (2011) estimated that use of genomic 
testing increased selection response between 29 and 158% depending on marketing method and 
the type of index (maternal or terminal).  For commercial bulls and stud bulls, this improvement 
was valued between AU$89-$565/hd and $5,332-$27,910/hd, respectively, above traditional 
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performance testing. On a per test basis (because the entire bull calf crop was tested, but not all 
went on to be AI sires or even commercial bulls) the value of the DNA test was $204-$1,119 per 
test purchased. 

 Increasing revenue due to an improvement in the rate of genetic change caused by 
improved accuracy of selection criteria is certainly partially responsible for economic advantages 
obtained through genomic testing. However, some studies in dairy cattle have suggested the 
majority of the economic advantage is derived from cost savings associated with keeping, 
testing, and maintaining fewer bulls for shorter periods of time (Thomasen et al., 2014, Pryce 
and Hayes, 2012).  

 This cost savings was illustrated nicely in New Zealand, where prior to implementation 
of genomic selection, one farming cooperative progeny tested nearly 300 bulls per year. After 
adopting the use of genomic testing in young bulls, the number dropped to 160.  It was estimated 
that at that time, the cost to progeny test a bull was $NZ30,000-$40,000 (Spellman, 2012).  Thus, 
progeny testing fewer bulls resulted in a savings of $4.2 million.  Additionally, the increased use 
of young sires was estimated to increase genetic gain by 40-50%.  

 Similarly, Schaeffer (2006) estimated progeny testing bulls would cost the Canadian AI 
industry CAD$25 million/year (500 bulls at $50,000 per bull).  If this cost were attributed only to 
the 20 bulls returned to service, the cost of progeny testing was $1.25 million/bull at that time.  
After accounting for generation interval, accuracy of selection, and selection intensity the cost to 
the industry of changing the population by one genetic standard deviation was $116 million. The 
cost for implementing a genomic selection scenario was estimated to be $1.95 million in total, 
but that investment reduced the cost of proving bulls by 92% and the cost of a one genetic 
standard deviation change was reduced to $4.17 million.   This a is reduction in cost to the 
industry of over $111 million/yr at a time when the cost of genotyping was $500/hd. 

Commercial/Cow-calf sector 

 Work in the dairy industry has shown that the major factors impacting return on genomic 
selection at the commercial level are: the cost of the test, the accuracy of the test, the proportion 
of females that will be retained, and the information already available to make selection 
decisions (Spellman et al., 2012; Pryce and Hayes, 2012; Weigel et al., 2012), preliminary work 
in the U.S. cow/calf sector indicates the factors impacting return on investment for testing would 
be similar. 

 Weigel et al. (2012) examined breeding strategies that used genomic testing in 
commercial dairy females compared to breeding strategies that did not.  After accounting for the 
cost of testing in the selected females and their unselected contemporaries, they analyzed the 
difference in the lifetime net merit breeding value (LNM$). In all cases, the strategies that used 
genetic testing resulted in higher LNM$.  However, the greatest advantages where seen when 
testing was done in the youngest animals (heifer calves) with very little other information (no 
known pedigree) and when selection intensity was very high (many animals were culled). For 
example, LNM$ averaged $28 more for selected females than their unselected contemporaries 
when the top 90% were retained, when only the top 20% of females were retained, the difference 
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grew to $259. When sire was known, the differences between keeping the top 90% vs the top 
20% shrunk to $14 and $121, respectively.  

 Decker (2015) used the University of Missouri herd as an example for the value of 
genomic testing in commercial beef cattle.  These high-percentage Angus commercial heifers 
were tested with GeneMax™ Advantage test from Zoetis.  The average Total Advantage score 
for all tested heifers was 77.8 (Figure 2).  If the top 60% of the heifers were kept, (the bottom 
40% culled) the average increased to 86.2 (Figure 3), at $1.50/per 1-point increase in score, this 
meant that the selected heifers were expected to be $63/hd more profitable over their lifetime 
(assuming 5 calves) than the whole group (Figure 4).   

 
Figure 2.  Average, minimum and maximum GeneMax Total Advantage scores for all tested 
heifers. 
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Figure 3.  Average, minimum and maximum GeneMax Total Advantage scores for top 60% of 
heifers 

 

Figure 4.  Annual and lifetime profit difference between the tested group and top 60%. 
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 Several published documents do caution that genomic testing at the commercial level 
may not pay in all instances.  Van Eenennaam and Drake (2012) estimated that in Australia, the 
breakeven cost for DNA testing all potential replacement candidates (when no other information 
was available) was AU$13 for the domestic market and $24 if targeting the export market. If 
other sources of information were available, such as the heifer’s own 400 day weight, this 
breakeven cost dropped to $8. It’s important to note that this analysis only evaluated the benefit 
of the technology for retaining animals in the herd, but using the technology to make mating 
decisions was not considered, which is a loss in the value of the technology. 

 Pryce (2014) also explored the economic returns expected when genomic-tested females 
were retained as replacement heifers in the Australian dairy industry.  In a 100 cow dairy, when 
the cost of the genomic analysis was $AU 60 and the majority of heifers were needed as 
replacements, there were situations when testing did not make economic sense (Table 1). 
However, when the cost of the test was lowered to $40, all levels of selection intensity favored 
use of genomic technology (Table 2). Again, this analysis focused on the value of genomics for 
selection purposes, but not the value of using results for more strategic mating. 

Table 1. Net Profit after Genotyping Costs at $60/hd  
  Heifers retained 
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20 -5.07    
25 13.87 -13.11   
30 21.10 6.45 -18.98  
40 18.82 21.10 1129 -5.07 
50 4.96 20.81 21.10 13.87 

 
 
Table 2. Net Profit after Genotyping Costs at $40/hd 
  Heifers retained 
  15 20 25 30 
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20 21.60    
25 47.20 11.89   
30 61.10 36.45 5.02  
40 72.16 61.10 43.29 21.60 
50 71.62 70.81 61.10 47.20 

 
Feeder Cattle 

 Early promise for genomic technology suggested that perhaps it could be used to manage 
feedlot cattle by sorting them into similar groups based on genomic results.  However, 
Thompson et al. (2014) showed that increases in profit due to marker assisted management were 
extremely small (less than $3 per head).  On the other hand, using genomic results to select cattle 
for placement in the feed yard holds more promise with expected increases in profit by up to 
$38/hd, with average daily gain and marbling being the traits that contribute to the greatest 
increase in profit. In fact, there are programs that have been deployed in the industry in the last 3 
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years that have recognized the benefit of genetically differentiating feeder cattle (for example 
Top Dollar Angus and Reputation Feeder Cattle). 

 Compared to traditional methods of marketing feeder cattle (marketing whole groups 
live, dressed, or on a grid), using genomic technology to sort them into marketing groups does 
improve the opportunity for profit (Thompson et al., 2015). However, profit realized (from $1-
$8.51/hd depending on how cattle were marketed previously compared to after using genomic 
results) is not enough to cover the cost of genomic testing at this time.  

 So, for use in feeder and fed cattle, it appears that genomic technology holds the most 
promise for use in selecting them for placement (Thompson et al., 2014; Thompson et al. 2015).   
With commercially-available tests, targeted panels that focus on the key profit-driving traits 
(currently, marbling and gain) are the most promising for a return on investment. However, if 
there was a value proposition for palatability traits such as tenderness, genomics would be a key 
driver in realizing a more consistently palatable product to the consumer and more profit to the 
producer (Weaber and Lusk, 2010). 

 In the meantime, an opportunity exists to test a random sample of animals and extrapolate 
results to make informed decisions, and achieve significant return on investment (up to 250%) 
while testing as few as 10% of the animals (Thompson et al., 2016) in a management group. 

 With continued research, the potential exists to use genomics in feedlot cattle to manage 
cattle for performance, health status, and response to certain treatment regimes.  Also the 
possibility to use genomics to understand the interaction of microbiome DNA with host DNA to 
improve economic traits such as feed efficiency (Roehe et al., 2016). 

Avoiding Inbreeding 

 Hybrid vigor and inbreeding depression are the two measureable factors related to the 
way that genes combine due to mating decisions that cannot be over-looked both from the 
standpoint of animal performance as well as the opportunity for genomics to contribute real 
returns.  

 Inbreeding is defined as the mating of individuals that share a common ancestor and it 
has implications because it’s been shown to have a deleterious impact on fertility, longevity, 
disease resistance and other lowly-heritable traits.  In addition, inbreeding can increase the risk 
recessive abnormalities.  The ability of genomics to more accurately measure and manage 
inbreeding is an under-utilized feature of the technology that should yield returns in improved 
performance and greater return on investment for genomic testing. 

 Pryce (2014) indicated that a 1% increase in inbreeding decreased milk production by 21 
liters, and decreased fat and protein by 0.73 kg and 0.63 kg, respectively.  For every 1% increase 
in inbreeding, these performance reductions were estimated to cost $20 per cow. 

 Classically, avoiding inbreeding has been managed through pedigree relationships and 
assuming that relatives shared a certain quantity of their genome due to inheritance from a 
common ancestor.  In fact, relatives may have much more in common than a simple pedigree 
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relationship would reveal.  To do a better job of managing inbreeding Pryce (2014) illustrated 
that using current high-density and low-density genomic panels could be used to do a better job 
of managing inbreeding by calculating genomic relationship between animals. Using mating 
software combined with a threshold level of inbreeding allowable, farmers will be able to 
manage inbreeding by making wiser mating choices.  To date, this has been an under-utilized 
feature in the beef industry that deserves real consideration. 

 It should not go without mention that simple process of parent verification has a crucial 
impact on the accuracy of genetic evaluations and that genomic technology is the basis for this 
important verification.   

Conclusion  

 Genomic testing in the livestock industry is rapidly becoming more predictable as 
databases grow, costs per analysis decrease, and more traits are included.  Return on investment 
to the end user is an individualized estimate based on breeding objectives, intended use, and 
market needs of that specific operation. 

 Though not explicitly mentioned in this document, testing for genetic conditions, 
assuming a reasonable gene frequency, is nearly always justifiable (VanEenennaam and Drake, 
2012). 

 However, for genomic trait tests, the answer is a bit more complicated.  At the seedstock 
level, given the accuracy, price, and range of traits covered by current tests, testing is genetically 
and economically a wise decision, speeding up genetic progress and reducing risk of selecting 
animals that will under-perform expectations in the market place. As a management tool, 
genomic analysis is just beginning to be used in the dairy industry for health traits and in the 
foreseeable future will expand to include how the animal’s own genotype interacts with the 
environment it is exposed to.   

 The combination of advanced reproductive tools and genomics is revolutionizing 
products offered to cattle producers, driving genetic progress at a faster pace and to heights only 
imagined a short decade ago.  Along with this revolution, progressive commercial operations 
will find new ways to access higher performing genetics for their herds than what was previously 
possible, changing the dynamics of the relationship between seedstock and commercial cattle 
producers.  What role will breed associations and performance recording groups play in the 
future of the beef cattle industry?  Who will own the superior genetics in the future?  

 Commercial producers already have access to the same advanced genetic tools that 
seedstock producers have, and can use them to drive their own herd improvement in a much 
more aggressive way than they are doing today.  Genomics combined with their own herd 
records gives them the opportunity to identify the best animals in their herds and then chart a 
course for within-herd improvement at a greater magnitude than ever possible before.  

 The value of genomic technology in returns to the producer is well-documented in dairy 
and is beginning to be proven in beef cattle as well. The value to bull-studs through reduced 
progeny testing is especially evident, possibly saving that industry over 90% of the cost 
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associated with proving bulls (Schaeffer, 2006).  Are bull-buyers willing to pay for this 
technology?  In work submitted for publication in 2011, Vestal et al. (2012), found there was no 
evidence that bull buyers were willing to pay for DNA profile information for beef bulls 
available at auction. However, those authors did concede that willingness would likely change 
over time as buyers became more comfortable and confident in DNA test results.  Indeed, much 
has changed since that time.  The technology has improved and considerable time and resources 
have been invested in outreach and education efforts related to genomic technology. There is 
preliminary evidence that producers investing in commercial replacement females have been 
willing to pay $200 more per head for those that have been genomically tested (Decker, 2016). 
Combined with forthcoming results from Short et al., (2016) and MacNeil (2016), that suggest 
similar values at the commercial and seedstock level, it’s becoming apparent that the value 
proposition for genomic testing in beef cattle is strong. 

 There does seem to be some fear on the part of breeders that testing may discount some 
animals with “undesirable” genomic results. Interestingly, Vestal et al., 2012 found that having 
no information (a blank box) in a sale catalog resulted in steeper discounts for some traits than 
having information that could be viewed as “bad”. Additionally, though genomic testing may 
reveal some animals that have less-than-desired genetic potential, it also stands to discover others 
that would not have been deemed as value based on classic evaluation criteria. 

 At the feed yard level, widespread testing of pens of animals may not be economically 
advantageous at the moment in the commodity beef market, but may be justifiable in branded 
beef programs where guaranteeing a positive eating experience for the consumer is paramount. 

 Continued collection of data and development of new or improved tests focusing on traits 
that contribute directly to profit is important to support more definitive return on investment for 
the cow-calf and feedlot sectors.  With fertility being the major profit driver at the commercial 
cow-calf level, a concerted effort needs to be made to gather service and breeding data for use in 
improvement and development of genomic tests.  The field of nutrigenomics, which studies how 
differences in feed types and gut-microbe DNA interact with genotype of the animal, offers 
much promise in providing opportunities for efficiency and performance gains in the feed yard.   

 All sectors of the beef cattle industry could benefit from genomic selection under certain 
scenarios. Continued cooperation among producers, researchers, breeding and genomics 
companies, and consumers offers the best opportunity for tools that can be used to increase 
profits for cattlemen in the months and years to come.   
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Introduction 

Because beef cattle are raised in extensive conditions, growth can vary across production 
environments. Within-breed genotype x environment interactions have been reported for 
weaning weight and yearling weight (Butts et al., 1971; Bertrand et al., 1987). When Hereford 
cattle were adapted to the Florida or the Montana climate, calves had 20 lb heavier weaning 
weights when grown in the environment they were adapted to (Butts et al., 1971). Genetic lines 
within a breed differ in their adaptability to specific regions. Thus, selection would be more 
accurate when using genetic predictions specific to a given environment. 

Part of this genotype x environment interaction could be attributed to differences in heat 
tolerance, an economically important trait for livestock producers in certain environments. In the 
beef industry, total economic losses from heat stress are estimated to be greater than $360 
million annually (St.-Pierre et al., 2003). Heat stress reduces feed intake, growth, milk 
production, and pregnancy percentage. Angus experience greater physiological effects of heat 
stress than Bos indicus and tropically adapted Bos Taurus breeds (Hammond et al., 1996). With 
Angus dominating the United States (US) beef industry, improving heat tolerance can have a 
large economic impact nationally and can increase the use of Angus genetics in regions with 
greater heat stress. 

Livestock populations can be selected for improved heat tolerance if genetic variation 
exists for the phenotype associated with greater temperatures. Genetic evaluations have been 
developed to identify those animals that are more robust to changes in temperature-humidity 
index (THI; Ravagnolo and Misztal, 2000; Zumbach et al., 2008b). As weather patterns become 
more erratic and global warming continues, the more robust animals will be more productive and 
profitable for farmers. Temperature data can be incorporated into genetic evaluations using 
reaction norms, which yield EPD based on different THI values. These methods have been 
applied to dairy, swine, and beef cattle to create selection tools for heat tolerance. 

Modeling heat stress 

Heat stress was characterized using THI (Zumbach et al., 2008a). These THI data were 
obtained from public weather station databases, because previous research demonstrated that off-
farm weather data was just as useful as on-farm data for assessing heat load (Freitas et al., 2006). 
Heat stress was based on weather conditions for 30 days before the weaning weigh date. The 
average THI for this period was used for the analysis. If the average THI was less than 75 °F, 
then the THI was set to 75 °F, and these animals were not expected to be heat stressed. All 
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animals in a weaning contemporary group were exposed to the same environmental conditions 
and had the same amount of heat stress. 

Weaning weights from the South region were used to develop a heat tolerance genetic 
evaluation. Heat stress was incorporated into a reaction norm model resulting in environment-
specific EPD for weaning weight and maternal milk. Additionally, weight was evaluated using a 
univariate model similar to a traditional growth evaluation for comparison.  

Results 

Heritabilities for weaning weight were greatest for large THI indicating that genetic 
variation exists to select for heat tolerance. Genetic correlations between THI values of ≤ 75 and 
≥ 82 °F were less than 0.50 and were indicative of weaning weights being different traits 
depending on the environmental temperature. Sire rankings were assessed for bulls with at least 
25 progeny with weaning weights. The rank correlation for proven sires was 0.32 between THI 
of ≤ 75 and 85 °F. Producers would select different bulls depending on the THI for their location 
for the 30 days prior to weaning. Greater response to selection could be achieved by selecting 
bulls that were best adapted to the climatic conditions. 

Conversely, heritabilities for maternal milk were consistent across heat loads indicating 
no change in genetic variability across environmental temperatures. Genetic correlations were 
strong between different heat load values with little re-ranking of proven sires. Possibly, heat 
stress affects cows by decreasing fertility and body condition but not milk production as 
measured by calf growth. Thus, milk can be selected across environmental temperatures with 
similar response to selection. 

Reaction norms for the 10 greatest (black) and least (grey) weaning weight proven sires 
from the univariate model are presented in Fig. 1. This figure presents the EPD for each bull 
based on THI from ≤ 75 to 85 °F. Bulls with straight lines would be expected to produce progeny 
with similar growth across THI environments. If the line decreases from left to right, that bull’s 
progeny are expected to grow less as THI increases and have poor heat tolerance. If the line 
increases from left to right, the bull’s progeny are expected to grow more as THI increases and 
have good heat tolerance. Because the lines for some of the greatest (black) and least (grey) 
growth sires cross, those sires would be expected to have similar progeny growth in 
environments with large THI even though the greatest growth sires were clearly superior for 
lesser environmental temperatures. 
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Fig. 1. Reaction norms for the 10 proven bulls with the greatest (black) or least (grey) 
weaning weight direct EBV from the univariate analysis for Angus in the South region 

The genetic trends for weaning weight based on 3 THI values are illustrated in Fig. 2. 
Weaning weight was less for greater THI indicating growth genetic potential was less in hot 
environments. Genetic merit has been increasing for THI of ≤ 75 and 80 °F but has started 
decreasing for THI of 85 °F. Thus, current selection practices in the Angus breed may be 
qreducing heat tolerance in the South. Angus breeders would benefit from selection tools to 
improve or maintain heat tolerance in areas affected by heat stress. 

 

Fig. 2. Genetic trend for weaning weight direct from the reaction norm based on 3 
temperature-humidity index (THI) values for Angus in the South region 

Conclusions 

 Genetic variation exists for heat tolerance in Angus, and these cattle can be selected to 
improve weaning heat tolerance. Proven sires rank differently depending on THI, which has 
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consequences for selection and mating decisions. Producers in the South region would benefit 
from environment-specific selection tools to identify the best growth sires for the specific 
climatic conditions. Additionally, Angus breeders should be concerned about weaning heat 
tolerance because of the decreasing genetic trend for weaning weight in extreme heat stress. 
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Hobbs Ranch  
Owner: Terry Hobbs Family 
Manager: Terry Hobbs 
Penokee, Kansas
Hobbs Ranch was established in 1887. After serving his country 
in the Civil War, Terry’ great-grandfather left Missouri and 
traveled west, homesteading along the north fork of the Saline 
River near Penokee, Kansas, in southern Graham County.

For 70 years, both registered and commercial Polled Herefords 
were raised on the ranch. They were a cooperator herd for the 
American Polled Hereford Association (APHA), progeny testing 
young sires, recording data and furnishing the association with 
all the results. They exhibited their cattle at many state fairs and 
shows during the 1970s and 1980s. Most of the bulls produced were fed and performance-evaluated at central 
bull tests not only in Kansas, but in Nebraska, Colorado and Oklahoma as well.

In the early 1990s it was decided to incorporate Angus genetics into the herd. They looked to this breed to 
complement their Hereford cow herd, gaining hybrid vigor, carcass quality and consistency. Presently, they 
run more than 500 cows on about 12,000 acres of grass and farmland. Calving season begins the first part of 
February and wraps up about the end of March. They artificially inseminate 100 replacement heifers and 100 
cows annually. All the heifers and cows are exposed to natural service sires during the summer. All the calves 
are weaned, usually in September and October, and backgrounded at the ranch for 60 to 90 days before being 
sent to a commercial feedyard, where growth and carcass value data is tracked for use in future bull selection. 
By retaining all, or part, ownership in their calves, they can take further advantage of the genetics they have in 
their herd.

The Kansas Livestock Association is proud to nominate the Hobbs Ranch.

Lovers Lane Farms  
Owners/Managers: Bill and Jim Martin 
Moorefield, West Virginia
Headquarted along the south branch of the Potomac River 
just north of Moorefield, West Virginia, Lovers Lane Farms is a 
third-generation, diversified livestock and crop farm managed 
by brothers Bill and Jim Martin along with their father, Leonard. 
The Martin family operates on 5,000 acres of owned and leased 
land spanning four counties, including 1,500 acres of crop land, 
and 2,500 acres of grazing and hay land, with the balance of the 
acreage being forested. 

They calve 600 commercial Angus-cross cows and graze 350 
stockers annually. The Angus based cow herd is sorted according 
to areas of need and specifically mated to top AI and performance tested Angus and Hereford bulls selected to 
improve each management group’s area(s) of weakness. Replacement heifers are selected using reproductive 
tract scores, pelvic measurements, and health status as well as individual, sire, and dam performance. Steer 
calves are weaned and preconditioned at least 45-60 days prior to shipment. In addition to their own calves, 
the Martins will background 2,500-3,000 purchased calves and fully finish an additional 500 annually. 

Home-raised and backgrounded calves as well as stockers are sold via local board sales in load lots 
to farmer feeders in the Eastern Corn Belt, where the Martin’s have developed a reputation for healthy, 
documented, quality cattle. Finished cattle are marketed through local sales where they are procured for 
harvest in Eastern Pennsylvania. Because of their location within the Chesapeake Bay Watershed, the Martin’s 
follow a comprehensive nutrient management plan on all managed properties to protect water resources and 
appropriately allocate manure nutrients from their feeding facilities as well as their six poultry houses where 
they raise around 200,000 pullets annually for Pilgrim’s Pride Corporation. 

Lovers Lane Farms is committed to maintaining healthy animals, a healthy environment, and a healthy 
business for their industry, their community and their family.

The West Virginia Cattlemen’s Association is proud to nominate the Lovers Lane Farms.

Commercial Producer Award Nominees
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Plum Thicket Farms  
Owners: Rex & Nancy Peterson, Patrick & Krista Peterson 
Manager: Dr. Nancy Peterson 
Gordon, Nebraska
Plum Thicket Farms is located in the panhandle of Nebraska. 
Average annual precipitation is between 14" and 16". They 
purchased the core of the ranch in January of 1998 along with 
200 Angus cows, calving over four months. At that time, the 
ranch consisted of 2,078 acres of native range, 170 acres of 
irrigated alfalfa under a side roll system, and 500 dryland acres 
in a wheat fallow system. The pastures were all season long 
grazed and the cattle were fed hay for five months of the year. 
The calves were sold at weaning.

They now control 4,000 acres of native range, grazed in a rest-deferred rotation grazing system. They no-
till farm 2,300 acres, including 560 acres under pivot irrigation. They calve 325 Sim-Angus cows for 45 days, 
starting in late April. Whole herd AI has been a staple of their program. From the outset, they have maintained 
detailed individual performance records that follow cattle to the rail. Nancy utilized this data to make bull 
selections and culling decisions. She has steadily improved the genetic quality of their herd. Utilizing annual 
forages, their cattle live within an eleven-month grazing program. They breed all of the heifers and select 
their replacements in the spring after they have had their first calf, selling young pairs that will likely go into 
a fall calving herd. They background all of the steers on forage cocktails and swathed sorghum supplemented 
with DDG and often retain ownership through the feed lot. They also run a small backgrounding lot. They are 
currently developing 300 heifer calves, 32 bull calves, and feeding 140 cull cows.

Plum Thicket Farms are a family operation with a passion for raising excellent beef cattle, and improving 
the range and soil that are their livelihood. Rex and Nancy head the cattle operation. After two tours of 
duty with the National Guard, Rex and Nancy’s son, Patrick, came home to head the farming operation. 
Patrick is passionate about improving soil health and conserving resources. His wife, Krista, is a large animal 
veterinarian with a mobile practice in the area. She did a food animal internship at Kansas State Veterinary 
School and is a welcome addition to their management team.

The Nebraska Cattlemen are proud to nominate Plum Thicket Farms.

SingleTree Ranch  
Owners/Managers: Frank and Sheila Daley 
New Castle, Colorado
SingleTree Ranch is a family run cow-calf operation started near 
New Castle, Colorado, in 1979 with the purchase of 106 acres of 
mostly irrigated land. An adjoining 160 acres were purchased in 
1980 along with 80 head of mostly black baldy cows. 

More land, cattle, BLM and Forest Service grazing permits 
have been acquired over the years. They now run close to 600 
cows on two ranches near New Castle and another 250 cows on 
ranches near Wray, Colorado, added in 2005 and 2007. All calves 
except mountain replacement heifers are backgrounded in a 
small feedlot on their ranch at Haigler, Nebraska, just across the 
state line from Wray. 

They feed the feeder calves to around 800 pounds at which time they decide whether to sell them or retain 
ownership while they are fed out at a custom lot. The dairy buy out in 1985 got them started on retained 
ownership and they have done it off and on since then. They purchased their first Limousin bulls in 1981 and 
have used primarily Limousin bulls since. They also have used Angus and a few Herefords. 

When they have expanded, they have purchased more cows, mostly Angus and Black Baldies, but have 
primarily raised their own cow herd. Cows on the mountain ranches are bred to start calving March 1, while 
those in Wray start April 1. For several years they have been keeping the calves in a “natural” (as per USDA 
guidelines) and have marketed finished cattle to Coleman Natural Meats, Laura’s Lean, Meyer Natural Angus, 

Commercial Producer Award Nominees
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National, Tyson, and a few others. Selling on a grid has worked well over the years because of the Limousin’s 
excellent carcass traits. They always have a very high yield and a high percentage yield grade 1’s and 2’s with 
large ribeye area. Their mountain cattle summer at elevations from 8,500 to 10,500 feet and they have always 
appreciated how well the Limousins perform at these elevations.

The North American Limousin Foundation is proud to nominate Single Tree Ranch.

Triple M Farm  
Owners: Tommy and Rhonda Martin 
Manager: Tommy Martin 
Moundville,  Alabama
Triple M Farm, owned and operated by Tommy and Rhonda 
Martin, is located in Hale County, Alabama, just south of 
Tuscaloosa. The farm began in 1943, when 180 acres was 
purchased by Tommy’s grandparents, and has produced beef 
cattle for three family generations. After his retirement in 2011, 
Tommy is operating the farm full-time. 

The farm consists of 250 acres of owned land, with an 
additional 90 acres of leased land, made of sandy loam and 
clay soils. The forage base primarily consists of Bermudagrass, 
Bahiagrass and Crabgrass, with annual planting of Ryegrass for winter grazing. Soil fertility and weed control 
are a major focus.

The Triple M herd consists of approximately 90 Simmental and Angus cross cows with a 90-day fall calving 
system, beginning to calve around September 25 each year. A SimAngus cross is maintained to balance 
heterosis to capture benefits in fertility, heavier weights and longevity. Artificial insemination, along with 
estrus synchronization and fixed-time AI, has made a tremendous impact by providing the ability to capture 
the highest quality genetics. Emphasis is given in balance to calving ease and growth to produce a live calf 
with solid growth traits and maternal ability. Feeder calves are marketed each August through a cooperative 
tele-auction sale to seize fall marketing opportunities. Replacement heifers are selected by evaluating heifer 
and dam performance histories to advance performance. Triple M Farm began maintaining performance 
records through the Alabama BCIA Commercial Record Keeping Program in 2000. Since then, Triple M Farms 
has earned a BCIA Gold Star Cow Award each year for the past 13 years, a Most Improved Herd in 2008 and a 
Top Weaning Weight Award in 2016.

Triple M Farm is proudly nominated by the Alabama Beef Cattle Improvement Association.

K-State Animal Sciences & Industry

The Kansas State University Animal Sciences and Industry department 
serves students, livestock producers and the animal and food industries 
through teaching, research and education. The K-State ASI app allows 
users to search for educational events and activities hosted by the 
department. Users can view schedules and download resources as well 
as access directions and points of interest. The app also includes access 
to online educational tools and news.
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BIF Commercial Producer of the Year

Name State Year
Woodbury Farms	 Kansas	 2015
CB Farms Family Partnership	 Kansas	 2014
Darnall Ranch, Inc.	 Nebraska	 2013
Maddux Cattle Company	 Nebraska	 2012
Quinn Cow Company	 Nebraska 2011
Downey Ranch	 Kansas	 2010
JHL Ranch	 Nebraska	 2009
Kniebel Farms and Cattle Company	 Kansas	 2008
Broseco Ranch	 Colorado	 2007
Pitchfork Ranch Illinois 2006
Prather Ranch California 2005
Olsen Ranches, Inc.	 Nebraska	 2004
Tailgate Ranch Kansas 2003
Griffith Seedstock Kansas 2002
Maxey Farms Virginia 2001
Bill & Claudia Tucker Virginia 2000
Mossy Creek Farm Virginia 1999
Giles Family Kansas 1999
Mike & Priscilla Kasten Missouri 1998
Randy & Judy Mills Kansas 1998
Merlin & Bonnie Anderson Kansas 1997
Virgil & Mary Jo Huseman	 Kansas 1996
Joe & Susan Thielen Kansas 1995
Fran & Beth Dobitz South Dakota 1994
Jon Ferguson Kansas 1993
Kopp Family Oregon	 1992
Dave & Sandy Umbarger Oregon	 1991
Mike & Diana Hopper Oregon	 1990
Jerry Adamson Nebraska 1989
Gary Johnson Kansas 1988
Rodney G. Oliphant Kansas 1987
Charles Fariss Virginia 1986
Glenn Harvey Oregon	 1985
Bob & Sharon Beck Oregon	 1984
Al Smith Virginia 1983
Sam Hands Kansas 1982
Henry Gardiner Kansas 1981
Jess Kilgore Montana 1980
Bert Hawkins Oregon	 1979
Mose Tucker Alabama 1978
Mary & Stephen Garst Iowa	 1977
Ron Baker Oregon	 1976
Gene Gates Kansas 1975
Lloyd Nygard North Dakota 1974
Pat Wilson Florida 1973
Chan Cooper Montana 1972
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Seedstock Producer Award Nominees

Brink Livestock 
Owners/Managers: Bob and Marilyn Brink 
Piedmont, Kansas
Bob and Marilyn Brink of Brink Livestock raise Braunvieh cattle 
on their ranch near Piedmont, Kansas. The Brinks entered into 
the registered Braunvieh business in 2000, and in 2005 relocated 
the operation to a grass-based ranch in the Flint Hills near 
Piedmont, Kansas. 

They have a herd of approximately 100 registered Braunvieh 
cows, calving in both spring and fall. Brink Livestock markets 
cattle in a number of outlets. They are a founding member of 
the Braunvieh Herd Builder Group and have sold cattle in all 
13 of the group’s annual sales. They also promote and sell their 
Braunvieh cattle at regional and national livestock shows, and have been proponents of performance testing 
their Braunvieh bulls. Bob and Marilyn have each served two terms on the Braunvieh Association of America’s 
Board of Directors, and have been strong supporters of youth in the Braunvieh breed.

The Brinks utilize native tallgrass prairie as their primary grazing source, and have worked extensively to 
be good caretakers of the land through rotational grazing and resting pastures, by controlling invasive species 
in the range and by improving water quality for livestock and wildlife. Bob grew up on the family farm and 
ranch in northeast Kansas, which included a herd of registered Hereford cattle as well as crop and haying 
operations. Marilyn was raised on a farm in Illinois and worked for 17 years with the American Polled Hereford 
and Hereford Associations.

Brink Livestock is proudly nominated by the Braunvieh Association of America.

Hunt Limousin Ranch 
Owners: Charles and Nancy Hunt 
Managers: Charles Hunt and son Daniel Hunt 
Oxford, Nebraska
“Conserve the land for the future generations, keep current and 
knowledgeable on the leading cattle issues, high quality cattle 
for a fair price, and treat people with honesty and integrity.” 
The Charles Hunt Family operation began in the 1960’s after 
Charlie attended the University of Nebraska. With a love for God, 
family, the land, and cattle Charlie and Nancy were ready for the 
opportunity to do then what they still enjoy doing today, over 56 
years later, raising cattle. 

Currently, the 6,500 acre diversified operation consists of 
dryland and irrigated corn, soybeans, alfalfa, wheat and grass land which supports 300 cows, private treaty 
bulls, and replacement females. Genetics have been placed all over the globe, including Canada, Mexico, 
Australia and New Zealand. Bulls have been on display at the National Western Stock Show for the past 31 
years and the Hunts have attended many BIF, NCBA, and numerous other Ag conferences. Charlie has been 
the recipient of many awards including the first ever Commercial Marketing Supporter Award from the North 
American Limousin Foundation. One of the most prestigious awards was being inducted into the Nebraska 
Cattlemen’s Hall of Fame.

The customers and acquaintances the Hunts have met in the beef industry have become some of their best 
friends. Hunt Limousin Ranch has hosted tour groups and individuals from foreign countries who want to 
learn the “Hunt Way”. All visitors are welcomed with a homemade meal and hot cup of coffee. Hunts take pride 
in making bull selection a relaxed, low-stress experience.

Charlie and Nancy have four children; David, Susan, Sally and Daniel and nine grandchildren. Their family 
is always ready to offer a helping hand on the ranch. One of their greatest honors is to have Dan, his wife 
Melinda, and their children Jenna, Adeline, and Houston living and working beside them, benefiting Hunt 
Limousin Ranch and the beef industry.

The Nebraska Cattlemen and the North American Limousin Foundation is proud to nominate the Hunt 
Limousin Ranch.
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Little Creek Farm  
Owners: Dr. Mikell and Mary Cheek Davis 
Manager: Alex Gardner 
Starkville, Mississippi
Little Creek Farm, LLC is located in Oktibbeha County, 
Mississippi near the city of Starkville. Twelve cows (four Polled 
Herefords, four Purebred Simmentals, and four Fullblood 
Simmental) were purchased in 1992. Two Full Fleckvieh 
Simmental heifers were purchased in 1993. Those two heifers 
began the Fleckvieh journey that continues today. 

Red Angus cattle were added to the operation in 2004 with 
the primary intention to breed the cows to Fleckvieh bulls to 
demonstrate the impact of Fleckvieh genetics in a crossbreeding 
program. They made the strategic decision to maintain a Red Angus herd along with the Fleckvieh herd and 
to produce the Fleck-Angus crossbreds with the goal to retain the crossbred females as recipients for their 
embryo transfer program.

Little Creek began with a 57-acre home place location. Since 1994 six parcels have been purchased which 
resulted in a total of 850 acres, of which 100 acres are dedicated to hay production.

Little Creek maintains a two-hundred cow herd: 50 AI quality Fleckvieh cows, 35 AI quality Red Angus 
cows, and 115 embryo recipients. Embryo donor cows are selected from the two AI herds based on the cows’ 
conformation, structural correctness (with emphasis on feet, legs, and udder), maternal qualities, ease of 
maintenance, and the quality of their offspring.

The Mississippi Beef Cattle Improvement Association is proud to nominate the Little Creek Farm.

Mill Brae Ranch  
Owners: T.D. Steele, Roger Steele, and Mark Nikkel 
Manager: Mark Nikkel 
Maple Hill, Kansas
Mill Brae Ranch is located in the Flint Hills region of eastern 
Kansas near Maple Hill. Comprised mainly of warm-season 
grasses, this region is a portion of the last tallgrass prairie left in 
North America.

T.D. and Roger Steele purchased the ranch in 1986 in an effort 
to expand their operation and bull sales. In the spring of 1987, 
Mark Nikkel was hired as herdsman for Mill Brae and three years 
later he assumed the day-to-day management of the ranch. 
In 2001, the Steele family offered Mark and his wife, Janice, 
the opportunity to join the operation as partners and Mill Brae Ranch LLC was formed. Mark and Janice’s 
daughter, Taylor, is actively involved on the ranch when she is not in school or participating in school, 4-H/FFA 
or junior breed association activities.

Today, operating on 5,000 acres of owned and leased land, Mill Brae Ranch runs a spring-calving herd 
consisting of 400 registered Angus and SimAngus cows and 150 commercial cows. The foundation females for 
the registered Angus cow herd trace back to the highly productive dams the Steele family used to establish 
their original cow herd in 1950. SimAngus genetics were added in 2013, in response to the needs of their 
commercial customers.

The registered cows are synchronized and artificially inseminated (AI) to proven high-accuracy bulls that 
rank in the top 15% in the breed for birthweight and weaning and yearling growth traits. Their main focus is to 
produce low birthweight, high-growth seedstock, with acceptable carcass traits, excellent udder quality and 
structural correctness. A portion of the commercial cow herd is used as recipients for the embryo transfer 
program. About 70 embryos are put in per year out of only highly proven donor cows, which allows them to 
duplicate their most superior genetics.

Mill Brae Ranch is proudly nominated by the Kansas Livestock Association.

Seedstock Producer Award Nominees
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Shaw Cattle Company  
Owners:  Shaw Family 
Managers:  Greg, Tucker and Sam Shaw 
Caldwell, Idaho
The origin of Shaw Cattle Co. began with a Hereford heifer. Tom 
Shaw worked weekends and summers throughout high school 
for a neighbor. After high school and upon his return from 
the U.S. Navy, the heifer was given to Tom as payment for his 
summers and a thanks for serving his country. The registered 
Hereford heifer became the foundation of Shaw Hereford Ranch 
in 1946. By 1959, Tom had married Mary, started a family and 
purchased a home near Notus, Idaho. The family moved from 
the original Shaw homestead to the current headquarters and 
continued to build a cow herd and raise a family.

Tom and Mary’s youngest son, Greg, officially joined the operation after graduation in 1968 and married 
Cleo two years later. In 1988, the Shaw cow herd was divided into three herds. Greg and Cleo, remained on the 
original home place at Caldwell to raise their three children Tucker, Sam and Jaime, and subsequently, formed 
Shaw Cattle Co. The third and fourth generations are continuing the tradition of raising reputable performance 
cattle. In 1990, Shaw Cattle Co. diversified the Hereford cow herd and added Red Angus genetics. In 1996, 
black Angus cattle were added to the herd. Today, Shaw Cattle Company maintains over 1,500 registered cows 
encompassing three breeds. The Shaw’s continue to improve the cow herd through the diligent selection of 
breed leading genetics with a keen eye toward performance, science and technology.

Greg and Cleo’s son, Sam, returned to the ranch in 1999, after graduating from the University of Idaho. Sam 
and his wife, Janel, are raising their three daughters on the ranch. After graduating from the University of 
Idaho and working in the private sector, Tucker returned with his wife, Angie, in 2003, and are raising their 
five children on the ranch. Greg and Cleo’s daughter Jaime, husband Kelley, and two daughters live in Eugene, 
Oregon, and enjoy helping out on the ranch when they can. 

The American Hereford Association is proud to nominate the Shaw Cattle Company.

Turner Farm 
Owners: J.B. and Barbara Turner, Jr. 
Manager:  J.B. Turner, Jr. 
Harvest, Alabama
Turner Farms is a diversified family operation, producing cattle 
and vegetables and is located in Madison County, Alabama. 
Turner Farms is owned and operated by J. B. Turner, Jr. and 
family, and has a firm commitment to producing high quality 
Angus and SimAngus seedstock and also F-1 Hereford/Angus 
cross females. 

Their breeding program onsists of approximately 80 mature 
cows and utilizes proven AI sires and embryo transfer to 
accelerate genetic advancement.Genetic selection emphasizes 
balanced EPDs along with visual appraisal to produce cattle with 
longevity and performance.  Donor selection is an intensive, ongoing process involving analysis of a potential 
donor’s pedigree, production record and performance of her progeny.  The American Simmental Association’s 
Total Herd Enrollment program and also the American Angus Association’s AHIR program are used for 
performance evaluation and analysis.

Turner Farms takes advantage of both a fall and spring calving season to meet the farm’s overall marketing 
goals.  Turner Farms has evaluated the performance of their genetics through the Alabama BCIA North 
Alabama Bull Evaluation for the past 7 years. Top quality commercial replacement heifers from Turner Farms 
have been a highlight of the North Alabama BCIA Heifer Sale for the past 10 years.

J. B. Turner is a steadfast conservationist and has applied many USDA NRCS programs within his 
operation since the 1980s.  His application of rotational grazing, cross fencing, improved water facilities and 
nutrient management has increased the land efficiency of his acreage.  His commitment to operating in an 
environmentally sustainable manner was recognized with the honor of the 2016 Alabama NRCS Small Farmer 
of the Year and the national USDA NRCS Lloyd Wright Small Farmer of the Year Awards.

The Alabama Beef Cattle Improvement Association is proud to nominate the Turner Farm.
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Name State Year
McCurry Angus Ranch	 Kansas	 2015
Schuler Red Angus	 Nebraska	 2014
Bradley 3 Ranch	 Texas	 2013
V8 Ranch	 Texas	 2012
Mushrush Red Angus	 Kansas	 2011
Sandhill Farms	 Kansas	 2010
Harrell Hereford Ranch	 Oregon	 2009
Champion Hill	 Ohio	 2009
TC Ranch	 Nebraska	 2008
Pelton Simmental Red Angus	 Kansas	 2007
Sauk Valley Angus Illinois 2006
Rishel Angus Nebraska 2005
Camp Cooley Ranch Texas 2004
Moser Ranch Kansas 2003
Circle A Ranch Missouri 2002
Sydenstricker Angus Farms Missouri 2001
Fink Beef Genetics Kansas 2000
Morven Farms Virginia 1999
Knoll Crest Farms Virginia 1998
Flying H Genetics Nebraska 1998
Wehrmann Angus Ranch Virginia 1997
Bob & Gloria Thomas Oregon	 1997
Frank Felton Missouri 1996
Tom & Carolyn Perrier Kansas 1995
Richard Janssen Kansas	 1994
R.A. “Rob” Brown Texas 1993
J. David Nichols Iowa	 1993
Leonard Wulf & Sons Minnesota 1992
Summitcrest Farms Ohio	 1991
Douglas & Molly Hoff South Dakota 1990
Glynn Debter Alabama 1989
W.T. “Bill” Bennett Washington 1988
Henry Gardiner Kansas	 1987
Leonard Lodoen North Dakota	 1986
Ric Hoyt Oregon	 1985
Lee Nichols Iowa	 1984
Bill Borror California	 1983
A.F. “Frankie” Flint New Mexico 1982
Bob Dickinson Kansas 1981
Bill Wolfe	 Oregon	 1980
Jim Wolf	 Nebraska 1979
James D. Bennett Virginia 1978
Glenn Burrows New Mexico 1977
Jorgenson Brothers South Dakota 1976
Leslie J. Holden Montana	 1975
Jack Cooper Montana 1975
Carlton Corbin Oklahoma 1974
Mrs. R. W. Jones, Jr.	 Georgia	 1973
John Crowe California 1972

BIF Seedstock Producer of the Year
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Name Publications State Year
E. C. Larkin Gulf Coast Cattlemen	 Texas	 2015
John Maday	 Drovers CattleNetwork	 Colorado	 2014
A.J. Smith	 Oklahoma Cowman Magazine	 Oklahoma	 2013
Burt Rutherford	 BEEF Magazine	 Texas	 2012
Jay Carlson	 BEEF Magazine	 Kansas	 2011
Larry Atzenweiler and Andy Atzenweiler	 Missouri Beef Cattlemen	 Missouri	 2010
Kelli Toldeo	 Cornerpost Publications	 California	 2009
Gren Winslow and Larry Thomas	 Canadian Cattleman Magazine	 Canada	 2008
Angie Denton	 Hereford World	 Missouri	 2007
Belinda Ary Cattle Today	 Alabama 2006
Steve Suther Certified Angus Beef LLC	 Kansas 2005
Kindra Gordon Freelance Writer	 South Dakota 2004
Troy Marshall	 Seedstock Digest	 Missouri 2003
Joe Roybal BEEF Magazine	 Minnesota 2002
Greg Hendersen Drovers	 Kansas 2001
Wes Ishmael Clear Point Communications	 Texas 2000
Shauna Rose Hermel Angus Journal & BEEF Magazine	 Missouri 1999
Keith Evans American Angus Association	 Missouri 1998
Bill Miller	 Beef Today	 Kansas 1997
Ed Bible Hereford World	 Missouri 1996
Nita Effertz Beef Today	 Idaho 1995
Hayes Walker III	 America’s Beef Cattleman Kansas	 1994
J.T. “Johnny” Jenkins Livestock Breeder Journal	 Georgia 1993
Dick Crow Western Livestock Journal	 Colorado 1991
Robert C. DeBaca The Ideal Beef Memo	 Iowa 1990
Forrest Bassford Western Livestock Journal	 Colorado 1989
Fred Knop Drovers Journal	 Kansas 1988
Chester Peterson Simmental Shield	 Kansas 1987
Warren Kester BEEF Magazine	 Minnesota 1986

BIF Ambassador Award Past Recipients

E.C. Larkin (right), Gulf 
Coast Cattleman, received 
the 2015 BIF Ambassador 
Award from Steve Munger, 
2014-15 BIF president.

189



Name State Year
Paul Genho	 Florida	 2015
Tom Woodward	 Texas	 2015
Merlyn Nielsen	 Nebraska	 2014
Gary Bennett	 Nebraska	 2014
Steve Radakovich	 Iowa	 2014
Keith Bertrand	 Georgia	 2013
Ignacy Misztal	 Georgia	 2013
Glenn Selk	 Oklahoma	 2013
Sally Buxkemper	 Texas	 2012
Donald Franke	 Louisiana	 2012
Leo McDonnell	 Montana	 2012
Mike Tess	 Montana	 2011
Mike MacNeil	 Montana	 2011
Jerry Lipsey	 Montana	 2011
Richard McClung	 Virginia	 2010
John & Bettie Rotert	 Missouri	 2010
Daryl Strohbehn	 Iowa	 2010
Glen Klippenstein	 Missouri	 2010
Bruce Golden	 California	 2009
Bruce Orvis	 California	 2009
Roy McPhee (posthumously)	 California	 2009
Donald Vaniman	 Montana	 2008
Louis Latimer	 Canada	 2008
Harry Haney	 Canada	 2008
Bob Church	 Canada	 2008
Rob Brown Texas 2007
David & Emma Danciger Colorado 2007
Jim Gosey	 Nebraska	 2007
John Brethour Kansas 2006
Harlan & Dorotheann Rogers Mississippi 2006
Dave Pingrey Mississippi 2006
Jack and Gini Chase Wyoming	 2005
Jack Cooper Montana 2005
Dale Davis Montana 2005
Les Holden Montana 2005
Don Kress	 Montana 2005
Frank Felton Missouri 2004
Tom Jenkins Nebraska 2004
Joe Minyard South Dakota 2004
George Chiga Oklahoma 2003
Burke Healey Oklahoma 2003
Keith Zoellner Kansas 2003
H.H. “Hop” Dickenson Kansas 2002
Martin & Mary Jorgensen South Dakota 2002
L. Dale Van Vleck Nebraska 2002
Larry Benyshek Georgia 2001
Minnie Lou Bradley Texas 2001
Tom Cartwright Texas 2001
J. David Nichols Iowa	 2000

Name State Year
Harlan Ritchie Michigan 2000
Robert R. Schalles	 Kansas	 2000
Joseph Graham Virginia	 1999
John Pollak New York 1999
Richard Quaas New York 1999
John Crouch Missouri 1998
Bob Dickinson Kansas 1998
Douglas MacKenzie Fraser Canada	 1998
Larry V. Cundiff Nebraska 1997
Henry Gardiner Kansas 1997
Jim Leachman Montana 1997
A.L. “Ike” Eller Virginia 1996
Glynn Debter Alabama 1996
James S. Brinks Colorado 1995
Robert E. Taylor	 Colorado 1995
Tom Chrystal Iowa	 1994
Robert C. DeBaca Iowa	 1994
Roy A. Wallace Ohio	 1994
James D. Bennett Virginia 1993
M.K. “Curly” Cook Georgia 1993
O’Dell G. Daniel Georgia 1993
Hayes Gregory N. Carolina 1993
Dixon Hubbard Virginia	 1993
James W. “Pete” Patterson North Dakota 1993
Richard Willham Iowa	 1993
Frank Baker	 Arkansas	 1992
Ron Baker Oregon	 1992
Bill Borror California 1992
Walter Rowden Arkansas 1992
Bill Long Texas 1991
Bill Turner Texas 1991
Donn & Sylvia Mitchell Canada	 1990
Hoon Song Canada	 1990
Jim Wilton Canada	 1990
Roy Beeby Oklahoma 1989
Will Butts Tennessee 1989
John W. Massey Missouri 1989
Christian A. Dinkle South Dakota 1988
George F. & Mattie Ellis New Mexico 1988
A.F. “Frankie” Flint New Mexico 1988
Glenn Burrows New Mexico 1987
Carlton Corbin Oklahoma 1987
Murray Corbin Oklahoma 1987
Max Deets Kansas 1987
Charles R. Henderson New York 1986
Everett J. Warwick Maryland	 1986
Mick Crandell South Dakota 1985
Mel Kirkiede North Dakota 1985
Bill Graham	 Georgia	 1984

BIF Pioneer Award Past Recipients
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Name State Year
Max Hammond	 Florida	 1984
Thomas J. Marlowe	 Virginia	 1984
Jim Elings	 California 1983
W. Dean Frischknecht Oregon	 1983
Ben Kettle Colorado 1983
Jim Sanders Nevada 1983
Carroll O. Schoonover Wyoming	 1983
Gordon Dickerson Nebraska 1982
Mr. & Mrs. Percy Powers Texas 1982
F.R. “Ferry” Carpenter Colorado 1981
Otha Grimes Oklahoma 1981
Milton England Texas 1981
L.A. Maddox, Jr. 	 Texas 1981
Charles Pratt Oklahoma 1981
Clyde Reed Oklahoma 1981
Richard T. “Scotty” Clark Colorado	 1980
Bryon L. Southwell Georgia 1980
Robert Koch Nebraska	 1979
Mr. & Mrs. Carl Roubicek Arizona 1979
Joseph J. Urick Montana	 1979
James B. Lingle Maryland 1978
R. Henry Mathiessen Virginia 1978
Bob Priode Virginia 1978
Ralph Bogart Oregon	 1977
Henry Holsman South Dakota 1977
Marvin Koger Florida 1977
John Lasley Missouri	 1977
W. L. McCormick Georgia 1977
Paul Orcutt Montana 1977
J.P. Smith Missouri 1977
H.H. Stonaker Colorado 1977
Forrest Bassford Colorado 1976
Doyle Chambers Louisiana 1976
Mrs. Waldo Emerson Forbes Wyoming	 1976
C. Curtis Mast Virginia 1976
Glenn Butts Missouri	 1975
Keith Gregory Nebraska	 1975
Braford Knapp, Jr.	 Montana	 1975
Reuben Albaugh	 California 1974
Charles E. Bell, Jr.	 Virginia 1974 
John H. Knox New Mexico 1974
Paul Pattengale Colorado 1974
Fred Wilson Montana 1974
Ray Woodward Montana	 1974
Jay L. Lush Iowa	 1973

Tom Woodward (left) of Broseco Ranch, Decatur, 
Texas, received the BIF Pioneer Award from Steve 
Munger, 2014-15 BIF president.

Paul Genho, president of Farmland Reserve Inc., Salt 
Lake City, Utah, was awarded the BIF Pioneer Award. 
Receiving the award in his honor were his two sons, 
John Genho and David Genho. Pictured are (from left) 
John Genho; David Genho; Mark Enns, BIF Western 
Region secretary; and Steve Munger 2014-15 BIF 
president.
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Name	 State/Organization	 Year
Joe Cassady	 South Dakota State Un.	 2015
Andy Boston	 Indiana	 2015
Lois Schreiner	 Kansas State University	 2015
Chris Shivers	 Am. Brahman Breeders	 2015 

Association
Larry Kuehn	 US MARC	 2014
Wade Shafer	 Am. Simmental	 2014 

Association
Warren Snelling	 US MARC	 2014
Susan Willmon	 Am. Gelbvieh Association	2014
Ben Eggers	 Sydenstricker Genetics	 2013
Brian House	 Select Sires	 2013
Lauren Hyde	 Am. Simmental	 2013 

Association
Jerry Taylor	 University of Missouri	 2013
Jack Ward	 Am. Hereford Association	2013
Tom Field	 Nebraska	 2012
Stephen Hammack	 Texas	 2012
Brian McCulloh	 Wisconsin	 2012
Larry Olson	 South Carolina	 2012
Tommy Brown	 Alabama	 2011
Mark Enns	 Colorado	 2011
Joe Paschal	 Texas	 2011
Marty Ropp	 Montana	 2011
Bob Weaber	 Missouri	 2011
Bill Bowman	 Missouri	 2010
Twig Marston	 Nebraska	 2010
David Patterson	 Missouri	 2010
Mike Tess	 Montana	 2010
Darrh Bullock	 Kentucky	 2009
Dave Daley	 California	 2009
Renee Lloyd	 Iowa	 2009
Mark Thallman	 Nebraska	 2009
Doug Fee	 Canada	 2008
Dale Kelly	 Canada	 2008
Duncan Porteous	 Canada	 2008
Craig Huffhines Missouri	 2007
Sally Northcutt	 Missouri	 2007
Jimmy Holliman	 Alabama 2006
Lisa Kriese-Anderson	 Alabama 2006
Dave Notter Ohio	 2006
Jerry Lipsey Montana 2005
Micheal MacNeil Montana 2005
Terry O’Neill Montana 2005
Robert Williams Missouri 2005
Chris Christensen South Dakota 2004
Robert “Bob” Hough Texas 2004
Steven M. Kappes Nebraska 2004
Richard McClung Virginia 2004

Name	 State/Organization	 Year
Sherry Doubet Colorado 2003
Ronnie Green Virginia 2003
Connee Quinn Nebraska 2003
Ronnie Silcox Georgia 2003
S.R. Evans Mississippi 2002
Galen Fink Kansas 2002
Bill Hohenboken Virginia 2002
William Altenburg Colorado 2001
Kent Andersen Colorado 2001
Don Boggs South Dakota 2001
Ron Bolze	 Kansas 2000
Jed Dillard Florida 2000
Bruce Golden Colorado 1999
John Hough Georgia 1999
Gary Johnson Kansas 1999
Norman Vincil Virginia 1999
Keith Bertrand Georgia 1998
Richard Gilbert	 Texas 1998
Burke Healey Oklahoma 1998
Glenn Brinkman Texas 1997
Russell Danielson	 North Dakota 1997
Gene Rouse Iowa	 1997
Doug L. Hixon Wyoming	 1996
Harlan D. Ritchie Michigan 1996
Paul Bennett Virginia 1995
Pat Goggins Montana 1995
Brian Pogue Canada	 1995
Bruce E. Cunningham	 Montana 1994
Loren Jackson Texas 1994
Marvin D. Nichols Iowa	 1994
Steve Radakovich Iowa	 1994
Doyle Wilson Iowa	 1994
Robert McGuire Alabama 1993
Charles McPeake Georgia 1993
Henry W. Webster South Carolina 1993
Jack Chase Wyoming	 1992
Leonard Wulf Minnesota 1992
John Crouch Missouri 1991
Robert Dickinson Kansas 1990
Roger McCraw North Carolina 1989
Bruce Howard Canada	 1988
Bill Borror California 1987
Jim Gibb Missouri 1987
Daryl Strohbehn Iowa	 1987
Larry Benyshek Georgia 1986
Ken W. Ellis California 1986
Earl Peterson Montana 1986
Jim Glenn IBIA 1985
Dick Spader Missouri 1985

BIF Continuing Service Award Past Recipients
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Name	 State/Organization	 Year
Roy Wallace Ohio	 1985
James Bennett Virginia 1984
M.K. Cook Georgia 1984
Craig Ludwig Missouri 1984
Art Linton	 Montana 1983
J.D. Mankin Idaho 1982
Mark Keffeler South Dakota 1981
Glenn Butts PRI 1980
Jim Gosey	 Nebraska 1980
C.K. Allen Missouri 1979
William Durfey NAAB 1979
James S. Brinks Colorado 1978
Martin Jorgensen South Dakota 1978
Paul D. Miller Wisconsin 1978

Name	 State/Organization	 Year
Lloyd Schmitt	 Montana 1977
Don Vaniman Montana 1977
A.L. Eller, Jr.	 Virginia	 1976
Ray Meyer South Dakota 1976
Larry V. Cundiff Nebraska 1975
Dixon D. Hubbard Washington, DC	 1975 
J. David Nichols Iowa	 1975
Frank H. Baker Oklahoma 1974
D.D. Bennett Oregon	 1974
Richard Willham Iowa	 1974
F. R. Carpenter Colorado 1973
Robert DeBaca Iowa	 1973
E.J. Warwick Washington, DC	 1973 
Clarence Burch Oklahoma 1972

Chris Shivers (right), American Brahman Breeders 
Association, received the Continuing Service Award 
from Steve Munger, 2014-15 BIF president

Andy Boston (right), Purdue University Extension, 
received the Continuing Service Award from Steve 
Munger, 2014-15 BIF president.

Joe Cassady (left), retired BIF executive director, 
received the Continuing Service Award from Steve 
Munger, 2014-15 BIF president.

Lois Schreiner (right), Kansas State University, 
received the Continuing Service Award from Steve 
Munger, 2014-15 BIF president.
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Frank H. Baker 1923-1993
(Photograph of portrait in Saddle and Sirloin Club Gallery; Everett Raymond 
Kinstler, artist)

Dr. Frank H. Baker is widely recognized as the “Founding Father” of the Beef 
Improvement Federation (BIF). Frank played a key leadership role in helping 
establish BIF in 1968, while he was Animal Science Department Chairman 
at the University of Nebraska, Lincoln, 1966-74. The Frank Baker Memorial 
Scholarship Award Essay competition for graduate students provides an 
opportunity to recognize outstanding student research and competitive writing 
in honor of Dr. Baker.

Frank H. Baker was born May 2, 1923, at Stroud, Oklahoma, and was reared on 
a farm in northeastern Oklahoma. He received his B.S. degree, with distinction, 
in Animal Husbandry from Oklahoma State University (OSU) in 1947, after 
two and a half years of military service with the US Army as a paratrooper in 
Europe, for which he was awarded the Purple Heart. After serving three years as 
county extension agent and veterans agriculture instructor in Oklahoma, Frank 

returned to OSU to complete his M.S. and Ph.D. degrees in Animal Nutrition. Frank’s professional positions 
included teaching and research positions at Kansas State University, 1953-55; the University of Kentucky, 
1955-58; Extension Livestock Specialist at OSU, 1958-62; and Extension Animal Science Programs Coordinator, 
USDA, Washington, D.C., 1962-66. Frank left Nebraska in 1974 to become Dean of Agriculture at Oklahoma 
State University, a position he held until 1979, when he began service as International Agricultural Programs 
Officer and Professor of Animal Science at OSU. Frank joined Winrock International, Morrilton, Arkansas, in 
1981, as Senior Program Officer and Director of the International Stockmen’s School, where he remained until 
his retirement. Frank served on advisory committees for Angus, Hereford, and Polled Hereford beef breed 
associations, the National Cattlemen’s Association, Performance Registry International, and the Livestock 
Conservation, Inc. 

His service and leadership to the American Society of Animal Science (ASAS) included many committees, 
election as vice president and as president, 1973-74. Frank was elected an ASAS Honorary Fellow in 1977, 
he was a Fellow of the American Association for the Advancement of Science, and served the Council for 
Agricultural Science and Technology (CAST) as president in 1979. Frank Baker received many awards in 
his career, crowned by having his portrait hung in the Saddle and Sirloin Club Gallery at the International 
Livestock Exposition, Louisville, Kentucky, on November 16, 1986. His ability as a statesman and diplomat 
many awards in his career, crowned by having his portrait hung in the Saddle and Sirloin Club Gallery at the 
International Livestock Exposition, Louisville, Kentucky, on November 16, 1986. His ability as a statesman 
and diplomat for the livestock industry was to use his vision to call forth the collective best from all those 
around him. Frank was a “mover and shaker” who was skillful in turning “Ideas into Action” in the beef cattle 
performance movement. His unique leadership abilities earned him great respect among breeders and 
scientists alike. Frank died February 15, 1993, in Little Rock, Arkansas.

Larry Cundiff
(Photograph taken at BIF 2014, by Angus Journal)

Dr. Larry Cundiff retired in January 2007 after 40 years of service as a Research 
Geneticist with the U.S. Department of Agriculture, Agricultural Research 
Service. He was Research Leader of the Genetics and Breeding Research Unit at 
the U.S. Meat Animal Research Center from 1976 until 2005, when he accepted an 
interim eight-month appointment as Acting Center Director. 

Larry Cundiff was born in Kansas in 1939, received his B.S. from Kansas State 
University in 1961, his M.S. and Ph.D. from Oklahoma State in 1964 and 1966. He 
married his wife, Laura, in 1960. They have three children. He was on the faculty 
at the University of Kentucky from 1965 to 1967, before working as a research 
geneticist in the USDA.

Cundiff has not only designed, conducted and published some of the most 
important beef breeding research of the 20th century, but also has lead in the 
transfer of new technology to the beef industry through his continued work in 

Baker/Cundiff Award
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BIF and his presentations made across the nation and around the world. 
His research efforts have involved evaluation and utilization diverse breeds, effects and utilization of 

heterosis through alternative crossbreeding systems, and evaluation and effectiveness of selection for traits 
of economic importance in beef production. Since his retirement, he has continued service as a collaborator 
at the U.S. Meat Animal Research Center assisting with preparation of research reports and speaking at beef 
industry meetings and conferences. Dr. Cundiff has served as chairman of the Beef Improvement Federation 
(BIF) Committee on Genetic Prediction from 1973 until 2007, and as the Agricultural Research Service, 
USDA representative on the BIF Board of Directors from 1981 until 2007. He has served as editor of the Beef 
Improvement Federation’s 9th Edition of Guidelines for Uniform Beef Improvement Programs.

2016 Recipients

Kathleen Ochsner, University of Nebraska-Lincoln
Kashly Schweer, University of Nebraska-Lincoln

Past Recipients
Previously known as Frank H. Baker Memorial Scholarship

Name	 University	 Year
Justin Buchanan	 Oklahoma State Un.	 2015
Jamie Parham	 South Dakota State	 2015
Heather Bradford	 Kansas State Un.	 2014
Xi Zeng	 Colorado State Un.	 2014
Heather Bradford	 Kansas State Un.	 2013
Erika Downey	 Texas A&M Un.	 2013
Jeremy Howard	 Un. of Nebraska-	 2012 

Lincoln
Kristina Weber	 Un. of California-Davis	 2012
Brian Brigham	 Colorado State Un.	 2011
Megan Rolf	 Un. of Missouri	 2011
Kent A. Gray	 North Carolina	 2010 

State Un.
Lance Leachman	 Virginia Polytechnic	 2009 

Institute and State Un.	
Scott Speidel	 Colorado State Un.	 2009
Devori W. Beckman	 Iowa State Un.	 2008
Kasey L. DeAtley	 New Mexico State Un.	 2008
Gabriela C. Márquez Betz	 Colorado State Un.	 2007
Yuri Regis Montanholi	 Un. of Guelph	 2007
Amy Kelley	 Montana State Un.	 2006
Jamie L. Williams	 Colorado State Un.	 2006
Matthew A. Cleveland	 Colorado State Un.	 2005
David P. Kirschten	 Cornell Un.	 2005
Reynold Bergen	 Un. of Guelph	 2004
Angel Rios-Utrera	 Un. of Nebraska	 2004
Fernando F. Cardoso	 Michigan State Un.	 2003

Name University Year
Charles Andrew McPeak	 Michigan State Un.	 2003
Katherina A. Donoghue	 Un. of Georgia	 2002
Khathutshelo A. Nephawe	Un. of Nebraska	 2002
Khathutshelo A. Nephawe	Un. of Nebraska	 2001
Janice M. Rumph	 Un. of Nebraska	 2001
Paul L. Charteris	 Colorado State Un.	 2000
Katherine A. Donoghue	 Un. of Georgia	 2000
Janice M. Rumph	 Un. of Nebraska	 1999
Bruce C. Shanks	 Montana State Un.	 1999
Patrick Doyle	 Colorado State Un.	 1998
Shannon M. Schafer	 Cornell Un.	 1998
Rebecca K. Splan	 Un. of Nebraska	 1997
Robert Williams	 Un. of Georgia	 1997
D. H. “Denny” Crews, Jr.	 Louisiana State Un.	 1996
Lowell S. Gould	 Un. of Nebraska	 1996
D. H. “Denny” Crews, Jr.	 Louisiana State Un.	 1995
Dan Moser	 Un. of Georgia	 1995
Kelly W. Bruns	 Michigan State Un.	 1994
William Herring	 Un. of Georgia	 1994
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Development of economic selection indices for beef cattle improvement
Kathleen P. Ochsner, University of Nebraska-Lincoln

Introduction
Profitability is the primary goal for most beef cattle producers. The main source of long-term profitability for 

a beef cattle operation lies in its production efficiency relative to other operations (Harris, 1970). There are numerous 
approaches to achieve greater efficiency including nutrition, reproduction, management, and genetics. The goal in 
animal breeding and genetics is to improve animal populations and future generations of animals (Dekkers et al., 
2004). Expected progeny differences (EPD) are the traditional genetic tools used to select parents. A drawback to EPD 
is that they represent genetic merit in only one trait while in reality multiple traits influence an animal’s value (Hazel, 
1943). With EPD as a sole selection tool, producers are left to individually determine their optimal use and ultimately 
the economic importance of each trait (Bourdon, 1998). Selection indices account for multiple traits simultaneously 
and consider both biological production levels and economics (Parish, 2011). Falconer and Mackay (1996) recommend 
the use of selection indices for multi-trait selection in animal populations.

According to Hazel and Lush (1942), selection for an index which gives proper weight to each trait is more 
efficient than tandem selection or selection for multiple traits with independent culling levels. Tandem selection 
involves selection for one trait at a time until all traits have been improved to the desired level. This method is 
inefficient because selection pressure is placed on only one trait at a time, making genetic progress slow. Additionally, 
progress made in one trait could be eroded as selection pressure is placed on a different trait. When selection is based 
on independent culling levels, a certain level of merit is established for each trait and all individuals below that level 
are culled regardless of their performance in other traits. The main concern with this method is that an animal with 
superior performance in many traits may be culled if it is barely under the thresh hold level for just one trait. In this 
situation selection indices are an appropriate alternative because they allow for superior performance in one trait to 
compensate for poor performance in other traits.

Review of Literature
To achieve progress towards any breeding goal, it is important to determine which animals should be chosen 

as the parents of the next generation. Selection may differ between production systems and goals set forth for a 
particular operation. It is first important to specify the goal of a particular operation, and then develop a breeding 
program specific to this goal. Harris et al. (1984) presented an eight-step process for developing a breeding program: 
(1) describe the production system (2) formulate the objective (3) choose a breeding system and breeds (4) estimate
selection parameters and economic values (5) design an animal evaluation system (6) develop selection criteria (7)
design mating for selected animals (8) design a system for expansion.

Breeding Objective
The breeding objective is a combination of economic weighting factors and genetic information for traits to 

be improved (Falconer and Mackay, 1996). Selection on a breeding objective should result in increased profit of the 
firm that is investing in a breeding program (Goddard, 1998). Defining a breeding objective and developing selection 
criteria based on that breeding objective should be the primary step in developing a structured breeding program 
(Ponzoni and Newman, 1989). Defining an objective is critical because highly efficient selection for the wrong objective 
may be worse than no selection at all (James, 1982). To develop the most appropriate breeding objective several 
pieces of information are needed: (1) the management and production system of a group, (2) the return and cost of the 
production system, and (3) the economically relevant traits (ERTs) which influence returns and cost of production. 

The breeding objective for a beef cattle breed may vary depending on the production system being used 
(Phocas et al., 1998). Dickerson et al. (1974) suggested that the breeding objective for efficient beef production should 
be more efficient growth accompanied by earlier sexual maturity to reduce replacement cost, lengthen productive life 
and minimize increase in mature body size. Efficiency should be measured as cost per unit of product from females 
and their progeny over a given period of time. Traits considered for market animals by Dickerson et al. (1974) were 
carcass composition, meat quality, and optimum weight at slaughter. Traits considered for cows were mature size, 
milk production and calving difficulty. 

Garrick and Golden (2009) suggest that the goal of the beef industry as a whole should be to produce beef 
that is nutritious, healthful and desirable in a manner that is respectful of the resources used in its production. For a 
cow-calf system, Garrick and Golden (2009) describe the principal determinants of income as the number of females 
of breeding age, reproductive performance, calf survival, replacement rate, and the sex, weight and age of sale 
animals. Downstream factors which may potentially influence income are aspects of meat quality (e.g., marbling and 
tenderness) and management factors (e.g., adaptability, disease resistance, and docility). Expenses include feed costs, 
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veterinary costs, and labor. For a feedlot system, income is associated with the weight and carcass attributes of sale 
animals. Expenses include feed, yardage, labor and animal health.

Literature suggests that breeding objectives should be divided into groups depending on the emphasis of 
a breed or a specific operation. MacNeil et al. (1994) stated that the breeding system could be divided into three 
categories: general purpose, maternal and terminal. The U.S. beef production system can generally be divided into two 
sectors, seedstock and commercial. In seedstock operations, self-replacement is required to keep the breeding system 
stable so a maternal index can be used for producing reproductively proficient parents. Terminal selection indices can 
be used for commercial producers looking to purchase animals for use as parents in a system where progeny will be 
harvested.

It has been argued that biological efficiency should be used in defining breeding objectives instead of 
economic efficiency to assure sustainability of genetic improvement (Dickerson, 1982). However, difficulties in the 
expression of costs and revenues in terms of energy or protein consumption and lack of differentiation between values 
of products when biological efficiency is considered render this criterion unable to describe the overall objective of 
the producers (Harris and Newman, 1994). In general, even if future economic conditions can be difficult to foresee, 
the definition of the breeding goal according to an economic criterion allows a more complete description of the 
production system by also taking into account non-food costs (Dickerson, 1970; Goddard, 1998). Albera et al. (2004) 
stated that the use of biological rather than economic efficiency would lead to the formation of a different breeding 
goal. However, Albera et al. (2004) ultimately concluded that improvement in economic efficiency also leads to 
improved biological efficiency in most traits studied.

Determining traits in the breeding objective
A strong relationship between the breeding objective and changes in profitability is highly desirable, implying 

that all traits associated with profitability of an animal should be included (Pearson, 1982). Choice of traits to be 
included in the breeding objective should be based on relative contribution of each trait to the overall efficiency of 
production, which is usually evaluated from an economic perspective (Goddard, 1998). If efficiency is to be evaluated 
from an economic perspective, traits to be considered for use should be those which affect the income and cost of the 
system. Income is related to the number and value of sale animals, while cost is associated with the quantity and price 
of the resources required for production (Garrick and Golden, 2009). 

For selection to be most efficient for individual producers, a comprehensive and systematic way of relating 
changes in individual performance levels to changes in profitability at the enterprise level must be developed 
(MacNeil et al., 1997). As such, relative weighting of each contributing trait must be determined. Harris (1970) 
indicated that the relative emphasis placed on each trait in a selection program depends on the combination of 
economic importance of the trait, potential for genetic improvement of the trait, genetic interrelationships between 
the trait and the cost of measurement in labor, facilities and time. Potential for genetic improvement is also highly 
dependent on genetic variability and accuracy of selection decisions. In most species, using a complete breeding 
objective would result in including a large number of traits. Gjedrem (1972) considered the definition of the aggregate 
breeding value and concluded that all traits of economic importance should be included. The disadvantage to this is 
that it would require estimation of a large number of genetic parameters and economic values. In some cases, these 
parameters cannot be estimated accurately, and the resulting selection will produce less than maximum change in 
profitability (Harris, 1964; Vandepitte and Hazel, 1977). A more practical approach may be to include only those traits 
which account for a significant (perhaps 10%) proportion of the variation in profit (Pearson, 1982).

When determining traits to be included in the selection criteria during development of a selection index, it is 
important to differentiate between ERT and indicator traits. An ERT is a trait directly associated with profitability, and 
can be identified by considering whether a change in performance of the trait will result in a change in either income 
from or cost of production (Golden et al., 2000). If income or expenses change independently of the trait in question, 
the trait is likely an indicator trait. For example, consider calving ease and birth weight which are two EPD associated 
with dystocia. Calving ease is the ERT because selection on this trait will result in greater calf survival and heifer 
rebreeding rates, resulting in greater income. Conversely, birth weight is only an indicator of calving difficulty. Birth 
weight itself cannot explain all the differences in calving difficulty, and therefore should not be the focus of selection 
decisions designed to reduce dystocia. When information is available for the ERT, information on the correlated 
indicator trait need not be considered when calculating a selection index. The concept of ERT can help focus selection 
pressure on what will directly influence profitability (Enns, 2013). 

In practice, some traits in the objective are not readily observed, hence our need to use indicator traits for 
predicting traits that do hold economic relevance. For some ERT, data collected on the trait may misrepresent the 
population, and thus prediction on an indicator trait may be more accurate. For example, genetic evaluation for 
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carcass traits is problematic in seedstock herds because few young animals are harvested. Animals that are harvested 
are likely individuals deemed unsuitable for breeding, and not representative samples of offspring. It is also most 
appealing to incorporate traits for which data already exists, which often leads to incorporation of a number of 
indicator traits rather than ERT. The methodology to develop selection indices from a list of traits including some 
correlated indicator traits is well-accepted, but requires a priori knowledge of the genetic correlation between the 
indicator traits and ERT (Garrick and Golden, 2009).

 Sivanadian and Smith (1997) showed that response to selection is improved as additional traits are added to 
the selection criteria, given that the parameters are known without error. They further demonstrated that the change 
in response increased as the heritability and/or the economic weight of each added trait increased. The magnitude 
of the change was influenced by the product of the heritability and the economic weight. Hazel (1943) confirmed 
that information collected on a greater breadth of traits for a greater number of animals will improve the response to 
selection when using indices based on that information. This was demonstrated through a swine breeding program 
using individual phenotypic data, productivity of the dam and average weight and score of the litter simultaneously in 
order to increase genetic progress expected when using an index to make selection decisions. Using an index which 
combined all three sources of information improved efficiency by 11.3 percent as compared to a selection index based 
only on an individual’s own phenotypic records. Since time and effort expended in keeping records is but a small 
portion of total labor in a breeding program, it may be worthwhile to collect additional data on a larger number of 
animals in order to improve response when implementing index selection.

Estimation of relative economic values
Economic values are necessary for each trait in the breeding objective to ensure that selection emphasis 

is proportional to the economic importance of each trait. Considering that most beef production systems have 
generation intervals greater than five years and significant genetic improvement requires more than one generation, 
it is obvious that relative economic values must pertain to the long run (MacNeil et al., 1997). When developing a 
selection index utilized in pursuit of a breeding objective, prices of concern are those several years into the future 
when the outcome of selection will be realized in the commercial industry. Selection choices are dependent on 
the relative prices of inputs and outputs and are therefore essentially unaffected by the general inflation of prices 
common to all inputs and outputs (Pearson, 1982). When choosing prices, previous price trends must be combined 
with a prediction of whether or not the trend will continue at a steady rate, intensify, or weaken. Frequent changes 
in price relationship can have a devastating effect on genetic change. In traits for which prices vary drastically 
over short periods of time, particularly in a cyclic fashion, considering prices from a larger range of time may be 
beneficial. Economic values should be changed infrequently, and only after substantial evidence for changing these 
price relationships has accumulated. Relative economic values should not be influenced by year-to- year fluctuations 
in prices of inputs or outputs (MacNeil et al., 1997). Further supporting this conclusion, Balaine et al. (1981) found 
correlations ranging from 0.98 to 1.0 between estimates of profit using widely divergent prices over a 15 year period.

The profit equation is a widely used method to derive the relative economic value. Moav and Moav (1966) 
presented a profit equation to integrate the cost and returns from production to compare the profitability of animals. 
In animal breeding, the profit equation is a mathematic form of the production system and the breeding objective. 
Garrick and Golden (2009) discussed measuring profit of a cow-calf production system in terms of ‘profit per unit 
land’, and in a feedlot system in terms of ‘profit per pen’. Thus, the specific profit perspective must be chosen in the 
initial stages of objective development.

Relative economic values recognize that economic return from a one standard deviation increase in one trait 
will not be equal to the same increase in another trait. Only economically important traits and indicator traits that 
will respond to selection are ultimately used by the seedstock producer. It is not efficient to measure or base selection 
on traits without economic value. Ponzoni and Newman (1989) outlined and implemented a method for determining 
relative economic values for beef production. In their example, they calculated relative economic values for the 
biological traits as partial derivatives of profit with respect to each trait holding the other traits constant at their mean 
levels.

The relative economic value for any one trait may differ depending on the goal of the breeding objective and 
the subsequent markets that the particular breeding objective targets. Melton (1995) discovered that a breeding 
objective generated specifically for a non-integrated cow-calf producer resulted in greater relative economic value for 
maternal and reproductive traits and lower relative economic value for retail product than an objective encompassing 
the entire beef industry. MacNeil et al. (1994) found that for Canadian beef production, cow weight, female fertility 
and maternal weaning weight had economic importance in maternal lines but not in terminal lines. Additionally, it was 
discovered that growth had higher relative economic value for the finishing phase than for the backgrounding phase. 
In the U.S. beef system, MacNeil (2005) found a high correlation among breeding objectives for four terminal sire lines. 
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This study demonstrated the importance of increasing calf survival, weight gain, dressing percentage and marbling 
score while decreasing feed intake and back fat. Quantifying the importance of each trait in the breeding objective is 
essential not only to effectively select animals with higher rank, but also to determine the priority of traits in relation 
to future research and to develop systems for data collection and evaluation of these traits (Garrick and Golden, 
2009).

While studying effects of production conditions on economic values, Koots and Gibson (1998) found that 
changes in some specific conditions resulted in large shifts in economic values. Reducing fertility and survival rate 
caused the largest changes to economic values. The economic value for mature weight was affected by practically 
all alternatives considered in the study. These results suggest that economic values will differ between production 
and marketing circumstances. MacNeil et al. (1997) pointed out that resources available for production and level of 
production vary among production units resulting in different economic structures. Thus, a customized approach 
to estimation of economic values, as described by Upton et al. (1988), may be warranted. Still, in practice the effects 
of changes of economic values on selection response depend on which traits appear in the index. Additionally, it 
has been shown that small changes in economic values do not significantly affect selection response (Vandepitte 
and Hazel, 1977; Smith, 1983). As such, a relatively small number of selection indices should cover a wide range of 
production and economic circumstances.

Selection Index Construction
In his seminal paper, Hazel (1943) outlined the following statistics which are necessary for selection index 

construction:
A. Phenotypic constants

1. Standard deviation for each trait
2. Phenotypic correlation between each pair of traits
3. Phenotypic correlations between the traits of relatives

B.	 Genetic constants
1. Heritable fraction of the variance in each trait
2. Genetic correlation between each pair of traits

Hazel (1943) introduced the analytical method for calculating a selection index. The aggregate value (H) of 
an animal is defined as the sum of its genotypes for each economic trait (Gi), with each genotype being weighted 
according to the relative economic value of that trait (ai). An animal’s genotype for a specific trait is the sum of the 
average additive effects of genes which influence the trait. Therefore, aggregate genotype is defined as:

(1) H = a1G1 + a2G2 + … + anGn

Recognizing that environmental factors, dominance and epistasis may influence phenotypic performance, 
selection for improved breeding value must be practiced indirectly by selecting for a correlated variable (I) based on 
the phenotypic performance of each individual for several traits. Hazel (1943) defines I as:

(2) I = b1X1 + b2X2 + … + bnXn

where Xi represents the phenotypic performance for the several traits which influence the goal trait and bi 
represents the multiple regression coefficients designed to make the correlation between H and I as large as possible. 

MacNeil et al. (1997) demonstrated how to calculate the vector (b) of weighting coefficients for each source of 
information in the index using the equation:

(3) b= P-1Gv

where P is a n x n matrix of the phenotypic (co)variances among the n traits measured and available as 
selection criteria, G is a n x m matrix of the genetic (co)variances among all m objective traits, and v is a m x 1 vector 
of relative economic values for objective traits.

Indices using EPD
Bourdon (1998) pointed out two serious drawbacks in applying index weighting factors to phenotypic values 

for an individual. First, this method lacks accuracy because it does not incorporate information on relatives. Second, 
it is biased because genetic differences among contemporary groups are not accounted for. These issues can be 
overcome by using genetic predications derived from best linear unbiased prediction (BLUP) instead of individual 
phenotypic performance. Henderson (1963) demonstrated that if genetic predictions derived from multitrait BLUP 
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are available for all traits in the breeding objective, genetic predications can simply be substituted for true breeding 
values in the breeding objective. Schneeberger et al. (1992) reconfirmed the equivalence of weightings derived using 
BLUP and conventional selection index. Further, they presented the models needed to compute index weights for the 
more likely case in which traits in the breeding objective differ from those for which genetic predictions are available. 
The equation to estimate index weights to be applied to EPD is:

b= G11-1G12v

where G11 is a n x n matrix of genetic (co)variances among the n selection criteria, G12 is a n x m matrix of 
the genetic (co)variances among the n selection criteria and m objective traits, and v is a m x 1 vector of relative 
economic values for all objective traits. Index weights calculated in this way account for potentially large amounts 
of information on relatives. The index will also be unbiased because predictions derived from BLUP procedures are 
themselves unbiased (Bourdon, 1998).

Improving accuracy of selection indices
Information gleaned from large scale genetic evaluation has led to an ever increasing number of EPD being 

made available to producers. The amount of information available is often overwhelming to producers when trying to 
make the best selection and purchase decisions. The increase in the number of EPD was based on the presumption 
that EPD for more traits helped better characterize the genetic capability of animals (Bourdon, 1998). In many cases, 
little consideration was given to the value of EPD and instead they were produced simply because data were cheaply 
and easily collected. Improvements in current selection indices still need to be made by increasing the number of 
ERT that have EPD reported. Spangler (2015) expressed his concern that many ERT are not currently evaluated 
nor collected routinely in the seedstock sector, even though they drive value downstream. Some ERT that fall into 
this category are reproductive performance, disease, tenderness, primal yield and dark cutters. In the future it is 
recommended that enterprise-level profitability moves closer to industry-level profitability.

Generally, some and perhaps most traits in the breeding objective are not observed so predictions for them 
must be calculated through covariances with measured traits. Since the relationships between observed traits and 
traits in the breeding objective are defined by covariances, they are assumed linear. While the use of covariance 
matrices is mathematically straightforward, it is not without problems (Bourdon, 1998). The linearity between some of 
these traits is questionable. Evans (1996) reported a nonlinear genetic relationship between scrotal circumference and 
heifer pregnancy. Scrotal circumference is an easily measured trait likely to be used as selection criteria while heifer 
pregnancy is an ERT likely to appear in a breeding objective. The accuracy of selection based on an index including 
scrotal circumference as selection criteria could be greatly improved if instead EPD for heifer pregnancy were 
reported and could be included in the selection criteria.

Conclusions and Implications to Genetic Improvement of Beef Cattle
Enns and Nicoll (2008) determined the long-term genetic change in a commercial beef breeding program 

resulting from selection for indices developed for an economic breeding objective. Changes in each of the breeding 
objective component traits were applied to the breeding objective equation to estimate average change in the 
aggregate breeding value (H). Selection based on an economic breeding objective in a New Zealand Angus nucleus 
herd described by Nicoll et al. (1979) was initiated in 1976, and significant improvement in H was realized from 1976 
through 1993. During this time, the increase in net income at an annual rate was equated to US$24.68 per cow lifetime. 
This study was among the first to report genetic improvement in commercial beef cattle breeding programs resulting 
from selection for an economic breeding objective and using indices that did not contain all traits of economic 
importance. Traits included in the index were weaning weight, yearling weight, mature cow weight and cow fertility. 
Results support the use of multi-trait selection indices to predict an economic breeding objective in beef cattle genetic 
improvement programs.

Livestock industries have relied increasingly on selection indices as a tool for maximizing profitability in 
individual livestock operations. Many breed associations have produced and published selection indices for use 
by producers. Literature provides ample evidence that selection indices are an efficient tool to utilize when making 
selection decisions. The power of selection indices can be improved by the willingness of producers to adopt 
selection index technology through guidelines for deriving relative economic values and implementing selection index 
technology in national cattle evaluation (MacNeil et al., 1997). The key to successful use of a selection index lies in 
identifying the index that best suits a particular operation while keeping in mind the goal to improve multiple traits 
simultaneously (Enns, 2013). Recognizing that the beef industry is dynamic and ever-changing, the selection index is a 
versatile tool to increase profitability of an operation by selecting for multiple traits of economic importance.
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Genomic selection for feed efficiency traits 
Kashly Schweer, University of Nebraska-Lincoln

Introduction
Feed costs comprise the majority of variable expenses in beef cattle systems making feed efficiency an 

important economic consideration within the beef industry (Koch et al., 1963; Dickerson et al., 1974). Aside from the 
direct economic impact of this trait complex at the individual producer level, the projections of global population 
growth provide extra pressure for efficient beef cattle production as producers try to combat the growing food 
demand with limited resources (Eggen, 2012). Improved feed efficiency also has an environmental impact through a 
decreased carbon footprint as more efficient cattle have fewer days to finish, emitting less methane throughout their 
lifetime (Freetly, 2013). 

There are multiple measures of feed efficiency. The most common used in the fed cattle sector is feed 
conversion ratio (FCR), the ratio of feed to gain (F:G), or gain to feed (G:F). This ratio is simply the raw pounds of feed 
required for raw pounds of weight gained, or the reciprocal. It makes no adjustments for age and weight differences 
of the cattle or energy content differences of the diet being fed. For these reasons, unadjusted FCR should be limited 
to use within contemporary groups. Due to the positive genetic correlation between feed intake and gain, selection to 
improve FCR has the potential to lead to larger, more maintenance intensive animals in the breeding herd (Archer et 
al., 1999).

One proposed alternative to FCR is residual feed intake (RFI). The concept of RFI was introduced by Koch et 
al. (1963) by suggesting that feed intake should be adjusted for body weight and weight gain, making RFI the difference 
between actual feed intake and the predicted feed intake of an animal based its requirements for maintenance and 
gain. More desirable or efficient animals will have a negative RFI value with an average individual having an RFI of zero 
(Koch et al., 1963; Archer et al., 1999). The prediction equation is developed by regressing actual feed intakes, gains 
and weights of the animal’s contemporaries, meaning the sum of RFI values across the contemporary group in which 
it was calculated should equal zero and thus contemporary group definition becomes vital. It is sometimes considered 
the preferred definition of feed efficiency because RFI is phenotypically independent of the production traits (growth 
and body weight) used in the prediction equation (Kennedy et al., 1993). Ultimately, selection on RFI is equivalent 
to using a restricted selection index containing the component traits. Since genetic variation in RFI exists, genetic 
progress towards more efficient cattle through selection on this trait is possible. 

The use of RFI as a measure of feed efficiency is occasionally contested for a variety of reasons including 
difficult interpretation and differences in the frequency of recording for the component traits. Additionally, if any 
genetic or residual correlations exist between feed intake and maintenance traits, the resulting heritability estimates 
can be flawed (Lu et al., 2015; Kennedy et al., 1993). In the dairy industry, Lu et al. (2015) proposed a multi-trait 
model as an alternative approach to feed efficiency. This may represent a more robust measure of feed efficiency and 
comprehensive investigation into the genetic relationship between intake and gain. 

Feed intake, and consequently feed efficiency traits, are difficult to obtain and expensive to measure. 
Consequently a genomics approach seems warranted. Although it is an expensive initiative, the detection of genetic 
markers for feed efficiency has the potential for great returns in the beef industry. 

Review of Literature
Genetic Parameters for Feed Efficiency Traits

Moderate heritability estimates for average daily gain (ADG), dry matter intake (DMI), metabolic mid-test 
body weight (MMBW; lb0.75) and RFI suggest genetic variation exists and genetic progress can be garnered. Average 
daily gain is defined as the difference between the start and end test weights divided by the total number of days 
on feed. Arthur et al. (2001a) used data from 1,180 young Angus bulls and heifers on performance tests to estimate 
genetic and phenotypic parameters. Direct heritability of ADG was estimated as 0.28 (Arthur et al., 2001a). Heritability 
estimates were higher from data on young Charolais bulls. The heritability of ADG was calculated at 15 and 19 months 
of age on Charolais bulls. Heritability estimates were moderate at 0.34 and 0.41, respectively, for the two ages (Arthur 
et al., 2001b). These estimates are similar to previous reports from Robinson and Oddy (2004) and Schenkel et al. 
(2003) of 0.23 and 0.35, respectively. 

Daily DMI is the cumulative on-test feed intake on a dry matter basis divided by the total days on feed. 
Nkrumah et al. (2007) estimated the heritability of daily DMI as 0.54 using crossbred beef steers, which is higher than 
a previous estimate of 0.44 by Schenkel et al. (2003). Feed intake can also be measured on an as-fed basis. Heritability 
estimates for feed intake as total feed consumed (as-fed) are also moderate with reports of 0.27, 0.48 and 0.39 from 
Robinson and Oddy (2004), Arthur et al. (2001b) and Arthur et al. (2001a), respectively. 
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Mid-test body weight (MBW) can be calculated by the average of the initial and end weights or through 
regression techniques. Metabolic mid-test body weight (MMBW) is MBW0.75. Arthur et al. (2001a) reported the direct 
heritability estimate of 0.40 for MMBW. This agrees with the estimates of 0.35 and 0.41 from Schenkel et al. (2003), and 
Robinson and Oddy (2004), respectively. 

Direct heritability estimates are moderate for RFI. Arthur et al. (2001a) estimated a heritability of 0.39. 
Schenkel et al. (2003) used two definitions of RFI. The first was the classical definition of the trait, the difference 
between actual feed intake and expected feed intake required for body weight and growth (RFIP), and the second 
included an adjustment for end of test backfat thickness (RFIb). Heritability estimates for both versions of RFI were 
very similar at 0.38 and 0.39 for RFIP and RFIb, respectively. Robinson and Oddy (2004) reported heritability estimates 
much lower for RFI (0.18) when cattle from varying breed types (temperate and tropical) at near market-ready weights 
were fed an ad libitum feedlot diet. Estimates for other feed efficiency related traits including FCR, feeding time and 
number of eating sessions per day are also moderate (Robinson and Oddy, 2004; Herd and Bishop, 2000; Arthur et al., 
2001a; Arthur et al., 2001b). 

Two of the main causes for genetic correlations between traits are the existence of pleiotropy and linkage 
(Bolormaa et al., 2014). Genetic and phenotypic correlations exist among feed efficiency traits and between feed 
efficiency and production traits. Phenotypic and genetic correlations between MMBW and ADG were 0.24 and 0.53, 
respectively (Arthur et al., 2001a). Moderate-to-strong positive genetic correlations exist between ADG and feed 
intake (as-fed or dry matter basis) with estimates of 0.54 (Arthur et al., 2001a), 0.87 (Nkrumah et al., 2007) and 0.50 
(Schenkel et al., 2004). Several authors have reported moderate phenotypic correlations between gain and feed intake 
ranging from 0.41 to 0.60 (Arthur et al., 2001a; Nkrumah et al., 2007; Schenkel et al., 2004). Additionally, MMBW has 
been reported to be positively correlated with feed intake both phenotypically (rp=0.77), and genetically (rg=0.71) 
by Schenkel et al. (2004). By definition, RFI should be phenotypically independent of its component traits (Koch 
et al., 1963). Estimates from Arthur et al. (2001a) illustrate this with reported phenotypic correlations between RFI 
and MMBW (rp=0.02) and between RFI and ADG (rp=-0.06). Nkrumah et al. (2007) reported RFI was also genetically 
independent of its component traits, ADG and MMBW, with estimates close to zero (rg=-0.04, rg=-0.06). Nkrumah et al. 
(2007) reported that the genetic correlation between RFI and feed intake was 0.72, while feed intake was genetically 
correlated with F:G to a lesser degree (rg=0.31). Schenkel et al. (2003) also found RFI to be more strongly genetically 
correlated with feed intake than F:G, thus suggesting selecting for low RFI could decrease feed intake more substantially 
than selecting for FCR. 

Feed intake tends to be positively genetically correlated with postweaning growth traits including 200-
d weight direct and 400-d weight direct with estimates of rg =0.28 and 0.56, respectively (Arthur et al., 2001a). 
Additionally, RFI was negatively correlated with 200-d weight direct (rg=-0.45) and 400-d weight direct (rg=-0.26; Arthur 
et al., 2001a). Both FCR and RFI are negatively correlated with longissimus muscle area (LMA). This suggests more 
efficient cattle have larger LMA (Schnekel et al., 2003). More efficient cattle may also produce a leaner product, as 
RFI is genetically correlated with intra-muscular fat percentage (rg=0.22) and rump fat (rg=0.72) (Robinson and Oddy, 
2004). Robinson and Oddy (2004) further investigated the association between RFI and fat by holding age and carcass 
weight constant. Regardless of adjustment, the magnitude and sign of the relationships were similar. 

Methods for genomic prediction
Traditionally, genetic selection to improve economically relevant traits in livestock has been based on 

phenotypic records and pedigree information. Estimated breeding values (EBV) are an estimate of the additive genetic 
merit of an individual for a given trait. The genetic value of a parent is one-half of its EBV, referred to as an expected 
progeny difference (EPD) in the U.S. beef cattle industry. The calculation an EPD combines pedigree information, the 
individual’s own performance records and the performance records of one’s offspring or relatives. Selection based 
on EPD has been successful. For animals to have EPD with high accuracy, many offspring with performance records 
are typically needed. In terms of feed intake, this is often not plausible due to the expense of recording phenotypes. 
The length of the generation interval is also a limiting factor on the timeliness of the genetic progress. The concept 
of identifying genes to improve certain traits and selecting candidates for breeding based on the presence of favored 
alleles is advantageous (Goddard and Hayes, 2009). 

One of the primary hurdles which must be overcome with the current genomic advances is continuing to 
develop methodology to accurately estimate marker effects in a computationally efficient manner. The evolution 
of methodology is almost as vast as the changes in technology, or possibly parallel to some degree. Historically, 
BLUP has given animal breeders a powerful tool for the prediction of breeding value based on performance records. 
Henderson (1984) realized the advantages of prediction with BLUP over least squares, regressed least squares or 
selection index due to the reduction of error and the greater correlations between the predictors and the predictions. 
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The BLUP methodologies were augmented to include maker effects into breeding value predictions through 
mixed models for the introduction of genomic BLUP (GBLUP; Fernando and Grossman, 1989). With BLUP, pedigree 
information is used to derive the relationship matrix making full sibs have the same EBV (parent average value). If 
instead, genomic information (i.e. SNP genotypes) is used to form the relationship matrix, the Mendelian Sampling 
term is taken into account and allows for individual deviation from the parent average. This increases the accuracy 
of the EBV and consequently, the response to selection (Hayes et al., 2009). As with most linear predictions, GBLUP 
assumes that all markers contribute to the overall genetic variance therefore meaning each of the SNP have small 
effects (VanRaden, 2008).

Regression techniques were also used as a method for MAS where least square analysis was used as a way 
to estimate marker effects. Lande and Thompson (1990) found MAS to be feasible through the multiple regression of 
phenotype on genotype at a given marker loci to determine markers associated with a given trait due to LD with the 
QTL. If a sufficient amount of markers are linked with the QTL and a large enough sample size of individuals exist, the 
regression should be able to account for most of the additive genetic variance within the trait due to a particular QTL 
(Lande and Thompson, 1990). In reality, the massive amount of marker effects cannot be estimated to be included into 
the standard regression model. With the advent of high-density genotyping platforms, the number of makers exceeds 
the number of genotyped individuals within the population. In order to overcome the challenge of dimensionality, only 
a subset of the marker effects are estimated to be included in the regression model and results in larger errors and 
poor estimates of the genetic value of an individual (Zhang and Smith, 1992; Whittaker et al., 2000). 

Ridge regression is a method that has better predictive ability than when only a subset of markers can be 
used (Breiman, 1995) as more markers are able to be included with the estimates of marker effects shrunk towards 
zero by a constant factor (λ) known as the smoothing factor (Whittaker et al., 2000). However, Xu (2002) demonstrated 
that this penalty approach may not be a valid method for QTL mapping when genome-dense SNP are used. Through 
a simulation study, Whittaker et al. (2000) showed ridge regression outperformed regression with a subset of marker 
effects estimated and traditional phenotypic selection.

Perhaps the most appealing method for genomic prediction lies within the “Bayesian alphabet.” Bayesian 
analysis has captured the attention of animal breeders for a number of reasons. First, Bayesian procedures have the 
ability to handle situations where the number of markers exceeds the number of observations (Gianola et al., 2009). 
Meuwissen et al. (2001) demonstrated how to make the transition from traditional BLUP estimation to analysis of 
marker effects with each SNP having a specific variance through Bayesian techniques. Bayesian analysis takes into 
account the degree of uncertainty revolving around each of the unknowns within the model (Gianola et al., 2009). 
Nonlinear equations, such as those within Bayesian methods, assume a prior distribution of SNP effects. This may 
be a more realistic approach as the effects from each marker may not all contribute small effects as assumed with 
linear predictions. In fact, major genes may exist on some chromosomes therefore having corresponding markers that 
explain a greater amount of genetic variance (VanRaden, 2008). 

In Bayesian models, all unknown parameters are treated as random variables each with its own distribution. 
Variables are further classified as observables or unobservables. The observable variables include the phenotype (yi 
for i=1,…,n where n number of individuals) and the marker information. The QTL effect (bj) and the variance of each 
marker effect (σ2j for j=1,…,p where p is the total number of markers) are considered unobservable. The distribution 
of the unobservable variables is referred to as the prior distribution, f(Ɵ). The distribution of the observable variables 
is a function of the unobservables; the likelihood function, f(y|Ɵ). The likelihood function represents the contribution 
of the phenotypic information to knowledge of the prior (Ɵ). The posterior distribution is the conditional distribution 
of the parameters given the observable variables or simply the combination of the likelihood function and the prior 
distribution, f(Ɵ|y). The Markov Chain Monte Carlo (MCMC) sampling technique draws samples from the posterior 
distribution to estimate the posterior means and variances (Xu, 2002; Gianola and Fernando, 1986). 

Meuwissen et al. (2001) proposed two Bayesian methods with the advent of genomic selection; BayesA and 
BayesB. BayesA shares similarities with the previous regression models as it assumes that all markers have an effect 
and the prior distribution of the marker effects is normal with a marker-specific variance from a scaled inverse chi-
square distribution. The normal distribution of SNP effects allows for some SNP to have larger effects than others, but 
with BayesA every SNP is treated as though it has a non-zero effect. However, if the number of QTL is substantially 
less than the number of markers and, given the multitude of SNP on current genotyping arrays, it seems logical to 
assume some markers will have no effect (Meuwissen et al., 2001; Goddard et al., 2010). For this reason, BayesB was 
introduced. BayesB allows for a proportion of the makers to have an effect (1-π) following a normal distribution and a 
proportion of the markers to have no effect (π). The proportion of markers that have no effect (π) is assumed a priori. 
The variance of the marker effects is sampled from a scaled inverse chi square distribution similar to the BayesA 
approach. One of the criticisms of BayesA and BayesB is the magnitude of influence the prior has on the shrinkage of 
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the marker effects (Gianola et al., 2009). BayesC assumes that every marker will not have an effect parallel to BayesB, 
but BayesC uses an equal variance for all SNP. BayesC can be extended by assuming that pi is not known and instead 
is estimated from the data (BayesCπ). Estimating π requires additional samples (Habier et al., 2011). The Bayesian 
alphabet continues to expand for animal breeding prediction. 

Methods of genomic prediction primarily exploit linkage disequilibrium (LD) between SNP markers and QTL. 
Although SNP-based models offer promise to discover genomic regions associated with traits of interest, models 
utilizing haplotypes consisting of multiple SNP markers may provide greater power for association experiments. This 
is primarily justified as haplotypes may be in greater LD with the QTL than the individual SNP marker. As the number 
of SNP markers within a chromosomal segment increase, the likelihood that identical haplotypes carried by different 
animals are identical by descent increases as well. Given haplotypes are identical by descent, QTL alleles would be 
conserved within the haplotype (Hayes, 2013). 

Inclusion of Genomic Information into National Cattle Evaluations
The augmentation of genomic information into National Cattle Evaluations (NCE) is critical for the progression 

of breeding programs. The advent of SNP panels to genotype large numbers of animals at a reasonable cost has made 
genomic prediction feasible. The QTL can be detected through LD with the markers, even though in practice the 
position of the QTL and the effects are not known. Summation of the product of the marker effects and SNP genotypes 
across all loci can estimate the breeding value of an individual based on markers effects only, or the molecular 
breeding value (MBV). This estimation focuses on the total genetic value of the animal instead of the precise discovery 
of QTL (Goddard et al., 2010). 

Molecular breeding values have been augmented into NCE for the majority of popular beef cattle breeds. 
Genomically-enhanced expected progeny differences (GE-EPD) are calculated similarly to traditional EPDs with 
the addition of genomic test results. The way the genomic information is augmented into EPDs differs and can be 
divided into multi-step and single-step approaches. The multi-step approach requires the estimation of marker 
substitution effects, the prediction of the MBV and the combination of MBV with EPD. Single-step approaches include 
all phenotypic, pedigree and genomic information by modifying the relationship matrix of the mixed model equations 
(Fernando and Garrick, 2013). 

In order to augment genomic information into NCE for one succinct value for selection decisions, a method 
referred to as “blending” was proposed. Blending is an index-like approach that utilizes traditional matrix calculations 
to establish the weighting factors b from Pb=g. These weightings will differ for each trait according to the accuracy of 
the MBV and for each animal according to the EBV reliability (Garrick and Saatchi, 2013). For most breeds, belnding is 
done post-evaluation and thus the MBV only influences the genotyped individual (Spangler, 2013). 

Kachman (2008) introduced methodology to incorporate marker scores into NCE by integrating MBV as a 
correlated indicator trait in a multi-trait model. This approach was very adaptable for breed associations. Contrary to 
the blended approach, treating the MBV as a correlated trait had the ability for the genomic information to influence 
other animals in the pedigree that did not have genotypic data (Spangler, 2013). This approach was later adopted by 
MacNeil et al. (2010) for the use of incorporating ultrasound data and MBV as indicator traits for predicting carcass 
EBV. Exploiting the knowledge of genetic correlations among traits and between traits and MBV allow for multiple 
sources of information to be used to predict hard to measure traits, such as carcass traits that can only be obtained 
after an animal is slaughtered. 

Recently, a single-step approach to GBLUP has been adopted. The single-step approach combines phenotypic, 
pedigree and SNP data in a single analysis. It creates the G relationship matrix using animals with genotypic data 
as with GBLUP and a sub-matrix using pedigree data for individuals without genotypic information. It combines 
those matrices into a relationship matrix, H. Evidence shows that single-step GBLUP (ssGBLUP) produces the same 
or improved accuracies of other genomic prediction models. It allows combined phenotypes from nongenotyped 
animal into the analysis. The limitations of ssGBLUP are the massive computing power needed. For large datasets, 
the inversion of the H matrix can be computationally expensive. Additionally, the G and A matrices need to be scaled 
appropriately (Misztal et al., 2013). Several breed associations are moving toward this single-step approach for their 
genetic analyses. 

As with any method of genomic augmentation, animals with preexisting high accuracy EBV do not notice 
additional gains in accuracy by incorporating molecular information for a given trait. However, lowly accurate animals 
(i.e. those without progeny) do see gains in accuracy. The increase in accuracy through the incorporation of genomic 
information is directly related to the correlation between the phenotype and the MBV as the amount of genetic 
variance explained is equal to the square of the correlation. This is best illustrated by an example adopted from 
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Spangler (2011) using results reported by MacNeil et al. (2010). Assuming the correlation (r) for marbling score was 
0.37, 13.7% (r2x100) of the additive genetic variance of marbling score was explained by the genomic test. Moreover, 
if the heritability of marbling is known to be moderate (h2=0.3), the gain in accuracy for an animal with no ultrasound 
record or progeny information is now equivalent to the accuracy of having 5 progeny with carcass records in its 
pedigree or ultrasound information on the individual itself through the incorporation of genomic data (Spangler, 2011). 

The primary justification for incorporating molecular information into traditional selection methods is the 
faster rate of genetic gain than could be achieved by phenotypic data alone (Meuwissen et al., 2001). Meuwissen 
and Goddard (1996) predicted 8-38% extra genetic gain through the incorporation of marker information into 
BLUP breeding values. Additional advantages of genomic selection include improved accuracy of young, unproven 
animals as selection candidates (Kachman et al., 2013) such as yearling bulls who have not produced offspring. In 
the dairy industry, it is estimated that the use of genomic selection with reduce the costs of bull testing by upwards 
of 90% (Eggen, 2012). The ability to make more accurate selection decisions at a younger age will in turn reduce 
the generation interval, speeding the rate of genetic progress as Meuwissen et al. (2001) anticipated. Within the 
beef industry, genomic predictors allow for selection of economically relevant traits that have phenotypes that 
are only expressed late in life, phenotypes that are expensive or difficult to measure, traits that are limited by sex, 
lowly heritable traits or phenotypes that can only be collected once the animal has been harvested (Dekkers, 2004; 
Bolormaa et al., 2013). 

Conclusions and Implications to Genetic Improvement of Beef Cattle
In regards to feed efficiency, genomic prediction is conducted as the association between genotypic data 

and measures of feed efficiency such as FCR, RFI or component traits including DMI or ADG. Multi-trait models have 
been proposed in the dairy (Lu et al., 2015) and swine (Strathe et al., 2014) industries as a more comprehensive 
investigation of feed efficiency. Lu et al. (2015) modeled DMI with energy sink traits including milk and MMBW. The 
classical calculation of RFI assumes relationships at the genetic and nongenetic levels are constant. The proposed 
multi-trait model allows these relationships to differ. Aside from the gains in genetic prediction accuracies with the 
multi-trait model over RFI, the multi-trait model allows the inclusion of all animals, even those with missing records 
(Lu et al., 2015). 

Given multi-trait models can be deployed for genetic merit prediction, it seems possible to use the same 
approach with genomic prediction. A multi-trait model for GWAS including intake and gain is currently an unexplored 
area in the beef cattle industry. The frequency of intake and gain phenotypes differ considerably with gain measured 
more routinely on-farm. Since a strong genetic correlation exists between the two traits, a bivariate model would 
exploit the knowledge of the highly recorded trait to inform the limited phenotype.

Genomics has proven to be an exciting time within the beef industry; however, it is not a cure-all type of 
solution. With expensive to measure phenotypes, such as feed intake, it is practical to assume that only superior 
animals will be chosen for feeding trials. This non-random selection creates a bias in the genomic predictions 
(Spangler, 2013). Genomic prediction requires a large number of animals with phenotypic and genotypic data for 
training. For traits that are routinely recorded and have existing EPD, the transition to GE-EPD has been made. 
However, novel traits require greater effort to build resource populations of thousands of animals representing 
multiple breeds to establish genomic predictions that are robust across beef cattle populations. This has been the 
focus of a multi-institutional research effort in beef cattle (Saatchi et al., 2014). Genomic information could also be 
improved by having a greater understanding of the underlying biological mechanisms of distinct phenotypes (Eggen, 
2012). Molecular breeding values work well when used within the same cattle breed as training, but lose efficacy when 
applied across breeds (Kachman et al., 2013).

At its current state, genomics serves as a tool to compliment selection techniques in order to gain higher 
accuracies. Although genomics was unable to serve as the magic bullet for animal breeding, it does bring forth 
advantages. Aside from the expected genetic gains through greater accuracies and decreased generation intervals, 
genomics has the ability to aid in parent identification and traceability. As industry and social demands continue to 
increase, it is vital for livestock producers to implement all possible selection techniques to produce the most efficient 
animals. The world population is expected to increase 40 to 50% by 2020 to 2030. To accommodate the growing 
demand for protein with the decreasing land resources, cattle must be more efficient in converting feed to consumable 
product. Increased environmental awareness also drives the demand for greater feed efficiency with concerns of the 
carbon footprint resulting from livestock production (Green, 2008). Cattle producers will face these contests and many 
others in years to come, but the opportunities through beef cattle genomics are considerable. 
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The Roy A. Wallace BIF Memorial Fund was established to honor the life and 
career of Roy A. Wallace. Mr. Wallace worked for Select Sires for 40 years, 
serving as vice-president of beef programs and devoted his life to beef-cattle 
improvement. He became involved with BIF in its infancy and was the only 
person to attend each of the first 40 BIF conventions. 

Roy loved what BIF stood for – an organization that brings together purebred 
and commercial cattle breeders, academia and breed associations, all committed 
to improving beef cattle. Wallace was honored with both the BIF Pioneer Award 
and BIF Continuing Service Award and co-authored the BIF 25-year history, Ideas 
into Action. This scholarship was established to encourage young men and 
women interested in beef cattle improvement to pursue those interests as Mr. 
Wallace did, with dedication and passion.

Proceeds from the Roy A. Wallace Beef Improvement Federation Memorial 
Fund will be used to award scholarships to graduate and undergraduate students 
currently enrolled as fulltime students in pursuit of a degree related to the beef 
cattle industry. Criteria for selection will include demonstrated commitment 

and service to the beef cattle industry. Preference will be given to students who have demonstrated a passion 
for the areas of beef breeding, genetics, and reproduction. Additional considerations will include academic 
performance, personal character, and service to the beef cattle industry.

Two scholarships will be offered in the amount of $1,250 each. One will be awarded to a student currently 
enrolled as an undergraduate and one will be awarded to a student currently enrolled in a master of science or 
doctoral program.

2016 Recipients

Ryan Boldt, Colorado State University
Will Shaffer, Oklahoma State University

Past Recipients
Name University Year
Joshua Hasty (graduate)	 Colorado State University	 2015
Matthew McIntosh (undergraduate)	 University of Connecticut	 2015
Heather Bradford (graduate)	 Kansas State University 2014
Maci Lienemann (undergraduate)	 University of Nebraska-Lincoln	 2014
Loni Woolley (graduate)	 Texas Tech	 2013
Tyler Schultz (undergraduate)	 Kansas State University	 2013
Ky Polher (graduate)	 University of Missouri	 2012
Natalie Laubner (undergraduate)	 Kansas State University	 2012
Jessica Bussard (graduate)	 University of Kentucky	 2011
Cassandra Kniebel (undergraduate)	 Kansas State University	 2011
Paige Johnson (graduate)	 Texas Tech University	 2010
Sally Ruth Yon (undergraduate)	 South Carolina	 2010

Roy A. Wallace BIF Memorial Scholarship
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GrowSafe Systems LLC 
Kansas Beef Council/Kansas Livestock Association
Merial
National Association of Animal Breeders

NAAB Bull Stud Members
ABS Global
Accelerated Genetics
Genex
ORIgen
Select Sires
STgenetics

National Cattlemen’s Beef Association 
Progressive Cattleman
Red Angus Association of America
Zinpro
Zoetis

Platinum Sponsors
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American Angus Association
American Hereford Association
Boehringer Ingelheim
Cross Country Genetics
International Genetic Solutions
Livestock Direct
Purina Animal Nutrition LLC

Gold Sponsors
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Affymetrix 
AllFlex 
American Gelbvieh Association 
American-International Charolais Association
American Shorthorn Association
American Simmental Association
International Brangus Breeders Association
Ranch House Designs
TransOva

American Brahman Breeders Association
Beefmaster Breeders United
Kansas Red Angus Association
Kansas Simmental Association

Braunvieh Association of America
Kansas Department of Agriculture

Silver Sponsors

Friend Sponsors

Bronze Sponsors
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Past BIF Commercial Producer of Year Tour
Tailgate Ranch, Tonganoxie, Kansas 

Tailgate Ranch is a commercial cow-calf operation consisting 
of about 1,500 acres of cool-season grass and legume pastures, 
390 acres of brome hay meadows, and 60 acres of alfalfa. Tailgate 
was formed in 1962 by Paul McKie and grew into its present 
state. The ranch is located at Tonganoxie, KS, about 30 minutes 
west of Kansas City. 

The ranch currently runs about 280 females (including 80 
replacement heifers) in its spring calving herd and 120 cows in 
the fall calving herd. Their main focus over the last seven years 
has been developing and breeding high-quality replacement 
females following a strict culling regime in order to build a 
superior maternal cow herd. Feedlot and carcass data have been 

collected to help improve feed efficiency and product quality.
Bred heifers begin calving February 10, and are through in 45 days. Heifers are estrus synchronized and 

artificially inseminated (AI) one time, then cleaned up by proven, easy calving Angus / Red Angus bulls. Spring 
cows, consisting mostly of Red Angus or Angus crossbreds, begin calving March 1 and are through by April 
15. Calves are pre-wean vaccinated, then weaned September 20 and put on growing ration and pasture until
steers are either sold or sent to a feedlot. Heifers continue developing on pasture for the AI breeding program. 
Fall calving cows, mostly straight Angus, begin September 1 and finish by October 15. Fall calves are generally
creep fed 60-80 days, weaned at 150 days of age, preconditioned and sold as grass cattle. Angus, Red Angus,
and Red Angus x Simmental bulls are used on the spring herd with Angus, Red Angus and Braunvieh bulls
used on fall cows.

Woodbury Farms, Quenemo, KS
Woodbury Farms is located in Osage County, Kansas, on the 
eastern edge of the Flint Hills. Their operation was started in 
1881 when Fred H. Woodbury purchased his first 80 acres near 
Olivet, Kansas.The headquarters of the farm was moved 25 miles 
northeast in 1968, as the original homeplace was flooded to 
make way for the Melvern Reservoir. 

The fourth generation of Woodburys now operates land in four 
counties, consisting of 5,000 acres of native and tame grasses 
and 400 acres of cropland. The cow herd is made up of 400 
spring-calving cows, of which 175 are registered Angus and 225 
are commercial Angus and black baldies, along with a few red 
baldies that stem from a Hereford cow base.

The Woodburys market calves through many avenues. All calves are backgrounded after weaning, with a 
majority of the steers being sold through the local sale barn. About 1/3 of the heifer calves are retained for 
replacements and a majority of the remainder are sold in a production sale in March, along with about 40 
yearling bulls from the registered herd.

A small number of steers and heifers also are entered in the annual Flint Hills Beef Fest held in Emporia, 
Kansas. Cattle are summer grazed on the Flint Hills, then finished at a commercial feedyard where carcass data 
is gathered. Over the past several years, Woodbury cattle have won the grandstand show in both the steer and 
heifer divisions and placed high in the grass futurity contest. They also won the steer carcass contest in 2012.

With a long-standing tradition behind them, the Woodburys are focused on continuing the operation into 
the next generations.
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Kniebel Cattle County, White City, Kansas 
The year 2013 marked the 135th anniversary of Kniebel Farms 
and Cattle Company, a diversified family operation that has 
grown from a single homestead to encompass 7,000 acres of 
Flint Hills grass and farmland. Great-grandfather Kniebel started 
raising cattle in 1878. Like most operations, the base herd was 
Hereford; but unlike most operations, there were never any 
calves sold, only market-ready cattle. Originally, finished cattle 
were driven to the railhead. As years passed, these cattle were 
trucked to Kansas City, sold to packing houses through local sale 
barns and, eventually, bought directly by packers.

The current operation, owned and managed by Charles and 
sons Kevin and Chuck and their families, consists of 500 spring-

calving cows and 60 fall-calving cows. They utilize a three-breed rotation, consisting of Red Angus, Angus 
and horned Hereford, in the crossbreeding program for their commercial herd. All the calves are finished in 
their family-owned feedyard. The farming portion of the ranch raises all the feed for the feedlot. It truly is a 
“conception to consumption” operation.

In 1996, they joined U.S. Premium Beef (USPB), a progressive group of ranchers and feeders that purchased 
part of the National Beef packing plant. USPB pays for harvested cattle on a grid, which rewards the quality we 
strive to produce.

Kniebel’s raise cattle that are thick, moderate-framed, easy-keeping, pound-producing, and also happen to 
be higher grading, choice cattle. Through USPB, carcass data is collected and added to culling criteria. Kniebel 
Farms and Cattle Company believe in developing a well-rounded program and they do not chase any single 
trait or fad. They continue to try to find ways to be more efficient and currently are incorporating different 
grazing varieties and techniques to hold down costs.

Past BIF Seedstock Producers of the Year Tour
McCurry Angus Ranch, Burrton, KS
McCurry Angus Ranch is a family owned and managed operation 
located in south central Kansas in the Sandhills area of Reno 
and Harvey counties. McCurry Angus Ranch utilizes 2,000 acres 
for home-based operations, with satellite operations in Chase 
and Greenwood counties, which consists of primarily native 
tallgrass prairie in the Flint Hills. Buffalo, SD, is the ET base for 
150 commercial Angus-based cows.

McCurry Angus consists of 400 registered Angus cows split 
evenly between spring- and fall-calving herds, and 250 spring-
calving commercial Angus cows. About 175 bulls are sold yearly 
in a spring production sale and private treaty sales throughout 
the year. The target customers are commercial cattle producers. 
Currently, females are marketed primarily private treaty. In addition, spring-born commercial steer calves are 
marketed through Superior Livestock’s online auction.

The ranch got its start in 1977, with the marriage of two third-generation Angus breeders. Andy and Mary 
McCurry began their first-generation start-up operation with seven registered Angus heifers representing 
pedigree lineage of seven distinct cow families, no land, no facilities, and no equipment. Today, 95% of the 
current herd traces back to those foundation females. Upon completion of college in 2004, the McCurrys’ 
son, John, joined the operation full time and expansion occurred. The firsthand knowledge of developing a 
business from the ground up, with no external financial backers or financial means beyond themselves, has 
provided the McCurrys with a unique insight of the overall business structure required for profitability and 
sustainability.
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Mushrush Red Angus, Strong City, Kansas
Mushrush Red Angus is a family-owned and managed operation 
located in the heart of the Kansas Flint Hills in Chase County. 
Literally scattered from one end of the county to the other, 
Mushrush Red Angus utilizes about 8,000 acres of native 
tallgrass prairie. While fairly diversified across segments of the 
cattle industry, the operation is unique in that every endeavor 
encompasses the use of Red Angus genetics.

The main enterprise consists of 500 registered Red Angus 
cows split evenly between spring- and fall-calving herds. About 
150 bulls are sold yearly in a spring production sale and private 
treaty sales throughout the year. The target customers are 
commercial cattle producers. In addition, a bred heifer program 

has been developed. Between 400 and 500 heifers, sourced from commercial customers using Mushrush 
genetics, are developed, bred and sold every year. Heifers not meeting the quality of their breeding program, 
bulls not meeting criteria to be seedstock, and Mushrush Red Angus-sired steers purchased from customers 
are fed to finish in their on-site 1,000 head feedlot or run through the stocker phase on grass pasture and then 
put on feed. All fed cattle are sold on a value-based grid to U.S. Premium Beef, with full carcass data collected.

Started by Robert and Oma Lou Mushrush in the early 1950s, the operation first accumulated 40 years 
experience in the commercial cow-calf business. When Joe and Connie Mushrush joined in 1980, the first 
registered Red Angus cows were added, in addition to an extensive stocker cattle enterprise. The feedlot was 
added in 1990. This extensive involvement in all segments of the cattle industry has given Mushrush Red 
Angus a unique insight into the needs of the commercial cattlemen.

Fink Beef Genetics, Randolph, Kansas
Completely unique may be the best way to describe the beginning 
and day-to-day operations of Fink Beef Genetics (FBG), located 
near Manhattan, Kansas. Faced with two low paying, full time 
jobs, one Angus cow, no land and very little money in 1977, Fink 
Beef Genetics has grown to a seedstock operation that today 
includes Angus, Charolais and F1s. The business incorporates all 
segments of the beef industry from conception to consumption.

Since 1991, owners Galen and Lori Fink, along with their 
daughter Megan, have devoted their efforts to FBG. The business 
operates entirely with rented land, purchased feeds and basically 
no outside labor. The operation has used AI exclusively since 
1977 and implants more than 1,000 embryos each year. 

Cooperator herds were devised in 1990 to utilize the commercial producers’ land ownership and 
management and form a profitable relationship for both parties. High accuracy sires dominate the breeding 
program and all pedigrees are stacked several generations deep to prevent surprises for customers.

Seedstock, embryos and semen are sold nationwide through public auctions, ecommerce and private treaty. 
The concept of pre-contracted bulls was developed by FBG in 1991. Customer service is a major part of the 
FBG program. Types of services available include the longest running sponsored calf sales in the United 
States, commercial female sales, seedstock cooperators in five beef alliances, credit for carcass data and 
working relationships with various feedlots. Fink Beef Genetics has co-founded two companies, Genetics Plus 
and Integrated Genetic Management, that focus on providing customers complete genetic assistance.

Since 1992, Finks have owned and developed the Little Apple Brewing Company Restaurant in Manhattan. 
This experience has provided insight into the beef industry from conception to consumption.
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Moser Ranch, Wheaton, Kansas
The spring of 1987 saw the Moser Ranch market four bulls as 
breeding stock to local cattlemen, and in their 11th annual sale 
on February 8, 2003, 118 head of Simmental, Angus and Red 
Angus bulls sold into seven states and one Canadian province. 
Harry, a native of North Dakota and graduate of North Dakota 
State University in agriculture/animal science, and Lisa, a native 
Kansan with a degree in agriculture/animal science from Kansas 
State University, have been in the cattle business all of their 
lives. Along with their children, Cameron, Kendra and Kayla, the 
Mosers own and manage the Moser Ranch, located approximately 
40 miles northeast of Manhattan in the northern Flint Hills of 
Kansas.

With the use of proven, predictable genetics, and extensive artificial insemination (AI) and embryo transfer 
(ET) program, utilizing every available economic and performance measurement as much as possible, the 
Mosers have built a very strong genetic base in their cow herd, while at the same time developing a strong 
customer service program. 150 spring and 20 fall-calving Simmental females, 40 spring and 10 fall-calving 
Angus, 25 Red Angus spring-calving females, and 50 fall-calving commercial Angus females make up the cow 
herd numbers on the Moser Ranch. Currently, seven producers are cooperator herds for the embryo transfer 
program, which began in 1991 and this enables the Mosers to produce approximately 150 additional calves per 
year. Bulls are sold primarily to commercial cattlemen in the annual bull sale, and females and embryos are 
sold private treaty.

The Mosers are very “hands-on” with respect to their entire operation. Whether it be day-to-day care of the 
cow herd, sire selection and mating decisions, all heat detection and AI work, weaning and development of 
bulls and replacements, putting up and grinding feed, all aspects of sale management and promotion, financial 
and breed association bookwork, computer time and web site updates, customer service and consultations or 
developing marketing options and feeding alliances, the family works together and utilizes the strengths each 
person brings to the operation.

In the past five years, the commitment to helping market customer calves through various avenues has been 
especially rewarding. Two alliances with which they are involved provide feedlot and carcass data on each 
individual animal that goes through each program. In addition, a Moser Influence Preconditioned Calf Sale held 
each fall gives still other customers a very lucrative option. Continued customer and consumer education is 
addressed regularly by holding seminars and hosting tours to enhance understanding of the beef industry.
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President
Craig Bieber (west)
Bieber Red Angus Ranch
11450 353rd Ave.
Leola, SD  57456
605-439-3628 (O)
605-439-3100 (F)
605-216-8169 (C)
craig@bieberredangus.com

Vice President
Marty Ropp (central)
Allied Genetic Resources
2245 Ropp Road
Normal, IL  61761
406-581-7835 (O)
mropp@alliedgeneticresources.com

Executive Director
Jane Parish 
NMREC Prairie Research 
Unit
10223 Hwy 382 | PO Box 60
Prairie, MS 39756
662-369-4426 (O)
662-369-9547 (F)
662-312-7285 (C)
j.parish@msstate.edu

Regional Secretary (West) 
& NBCEC Rep
Mark Enns 
Campus Delivery #1171
Dept. of Animal Sciences
Colorado State University
Fort Collins, CO  80523-1171
970-491-2722 (O)
970-491-5326 (F)
mark.enns@colostate.edu

Regional Secretary (East)
Darrh Bullock
University of Kentucky
807 W.P. Garrigus Building
Lexington, KY  40546
859-257-7514 (O)
859-699-8558 (C)
dbullock@uky.edu 

Regional Secretary (Central)
Bob Weaber 
Animal Sciences and Industry
Kansas State University
227 Weber Hall
Manhattan, KS  66506
785-532-1460 (O)
785-532-7059 (F)
bweaber@k-state.edu

Historian
Robert Williams
Cain Cattle Company
1479 Stockyard
Pickens, MS  39090
816-519-1179 (C)
rwilliams@caincattle.com 

CATTLE BREED REGISTRY 
ASSN REPS
Joe Epperly
North American Limousin 
Foundation
6 Inverness Court East, 
Suite 260
Englewood, CO  80112
303-220-1693 (O)
303-220-1884 (F)
303-884-3900 (C)
joe@nalf.org

Lauren Hyde
Am. Simmental Association
1 Simmental Way
Bozeman, MT  59715
303-717-0216 (O/C)
303-732-4528 (F)
lhyde@simmgene.com

Dan Moser
American Angus Association
3201 Frederick Avenue
St. Joseph, MO  64506
816-383-5196 (O)
816-261-1490 (C)
dMoser@angus.org 

Tommy Perkins
Int’l Brangus Breeders Assn.
5750 Epsilon
San Antonio, TX  78249
210-696-8231 (O)
417-860-6757 (C)
tperkins@int-brangus.org 

Chris Shivers
Am.Brahman Breeders Assn.
3003 South Loop W., Suite 520
Houston, TX  77054
713-349-0854 (O)
713-349-9795 (F)
cshivers@brahman.org

Jack Ward
Am. Hereford Association
PO Box 014059
Kansas City, MO  64101
816-842-3757 (O)
816-842-6931 (F)
jward@hereford.org

STATE/PROVINCIAL BCIA 
PRODUCER REPS
Donnell “Donald” Brown 
(at-large)
R.A. Brown Ranch
PO Box 727
Throckmorton, TX  76483
940-849-0611 (O)
940-256-1406 (C) 
dbrown@rabrownranch.com

Tommy Clark (east)
Mystic Hill Farms
12227 Mystic Hill Lane
Culpeper, VA  22701
540-825-7360 (O)
540-937-0029 (C)
cattleclark@gmail.com

John Genho (east)
4432 Sperryville Pike
Woodville, VA  22749
540-987-0385
jgenho@livestockgenetics.com

Lee Leachman (west)
Leachman Cattle of 
Colorado
2056 West CR70
Fort Collins, CO  80524
970-568-3983 (O)
970-568-3988 (F)
lee@leachman.com

Steve Munger (at-large)
Eagle Pass Ranch
38398 145th St.
Mansfield, SD  57460
605-229-2802 (O)
605-380-0092 (C)
steve@eaglepassranch.com
Also serves as past 
president

Joe Mushrush (central)
Mushrush Red Angus
2346B N Road
Strong City, KS  66849
620-273-8581
redcows@
mushrushredangus.com 

OTHERS
NCBA Representative
Josh White
National Cattlemen’s Beef 
Association
9110 East Nichols Ave., Suite 
300
Centennial, CO  80134
303-850-3379
jwhite@beef.org

NAAB Representative
Jared Murnin
Origen, Inc.
10 W Arrow Creek Road
Huntley, MT  59037
406-321-1542 (C)
jaredm@ORIgen-beef.com

Canadian Beef Breeds 
Council Rep
David Bolduc
Canadian Beef Breeds 
Council
320, 6715 – 8 Street N.E
Calgary, Alberta T2E 7H7
CANADA
403-730-0350 (O)
403-275-8490 (F)
403-625-0499 (C) 
cudlobe@platinum.ca

LIAISONS
USDA Extension Service 
Megan Rolf
Animal Sciences and Industry
Kansas State University
252 Weber Hall
Manhattan, KS  66506
785-532-6533 (O)
785-317-6364 (C)
megrolf@k-state.edu

USDA Ag Research Service 
Mark Thallman
U.S. Meat Animal Research 
Center
PO Box 166
Clay Center, NE  68933-0000
402-762-4261 (O) 
402-762-4173 (F)
mark.thallman@ars.usda.gov

*ex-officio members
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