

Zach DeBord, Zach Duncan, Madison Pflughoeft, Kyler Suhr, Cole Ellis, Bill Hollenbeck, Sean Montgomery, Evan Titgemeyer, Tyler Spore, Dale Blasi, and A. J. Tarpoff

Introduction

- Heat stress abatement strategies may improve animal comfor promote sustainability in the beef industry
- Our research group demonstrated improved feed efficiency calves were limit-fed a high-energy diet compared with calve for *ad libitum* intake a high-roughage diet
- Panting scores are an established method used to measure an comfort during heat stress events
- Previous research demonstrated shade reduced panting score severity in feedlot cattle
- To our knowledge, effects of limit-feeding a high-energy die shade on feed efficiency in stocker calves have not been investigated
- Limit feeding a high-energy diet with access to shade may in feed efficiency, improve animal comfort, and reduce water usage

Objective

• Evaluate the impacts of limit feeding and shade access as possible strategies to improve cattle efficiency, reduce water usage, and improve animal comfort in growing cattle.

Materials and Methods

- A total of 852 predominately black-hided heifers (initial weight 553 ± 62 lb), purchased from Iowa, Kansas, and Missouri, were transported to the KSU Beef Stocker Unit in 2021 and 2022
- Calves were blocked by load and arranged in a 2×2 factorial design with calves fed a high-roughage diet at *ad libitum* intake (45) or limit-fed a high-energy diet (60) in shaded (S) or non-shaded (NS) pens
- Limit-fed cattle were fed 2.2% of body weight (BW) on a dry matter basis for 90 days
- Calves were fed a gut-fill (53) equilibration diet from day 90-97 at 2.5% body weight to equalize gastrointestinal tract fill
- Calves were fed once daily beginning at 7:00 am using a Roto-Mix feed wagon (Model 414-14B, Dodge City, KS)
- Bunks were observed prior to feeding and calves fed for *ad libitum* intake had refusals targeted at 5% dry matter of previous delivery.
- Three animals per pen were randomly selected at 09:30 am, 1:30 pm, and 5:30 pm to determine panting scores on days when temperature humidity index (THI) was > 74 based on U.S. MARC predictive heat stress system
- Water usage data were collected using iPERL systems attached to automatic waterers (SENSUS, Morrisville, NC)
- Shade structures provided 77 ± 6.3 ft² of shade per animal (Strobel Manufacturing Inc. Clarks, NE)
- All data were analyzed using MIXED procedure in SAS (v9.4, SAS Institute In. Cary, NC)
- Performance and water usage model included fixed effects of shade, diet and shade × diet. Day served as the repeated measure for water usage data. Panting score data model included shade, hour, and shade × diet as fixed effects.
- Rumination data were recorded using a 3-axial accelerometer ear tags (Allflex Livestock Intelligence, Madison, WI) placed in calves on day 1 of study

Effects of Limit Feeding and Shade on Growing Calf Performance, Water Usage, and Animal Comfort

		Ĺ	Anim	al Pe	erfor	man	ce		
ort and		Treatment							
		No Shade		Shade			<i>P</i> -value		
when ves fed	Item,	45	60	45	60	SEM	Diet	Shade	$D \times S$
	BW, lb								
nimal	day 0	563.5	564.3	560.5	562.8	2.06	0.46	0.28	0.72
	day 90	811.7	807.9	825.7	814.1	4.61	0.10	0.04	0.40
e	day 97	808.2	834.0	818.3	837.0	4.85	< 0.01	0.19	0.47
	ADG, lb/d	2.25	2.39	2.44	2.53	0.057	< 0.01	< 0.01	0.47
et with	DMI, lb/d								
	0 to 90	20.14	14.84	21.45	14.92	0.274	< 0.01	< 0.01	< 0.01
	90 to 97	20.78	20.75	21.00	20.94	0.164	0.69	0.07	0.90
ncrease	Water Usage, gal/day	11.9	10.8	10.6	9.8	0.28	< 0.01	< 0.01	0.13

Feed to Gain (F:G) 12.00 10.00 8.00 6.00 4.00 2.00 0.00 **45 S 45 NS**

^{a,b} Means within diet with uncommon superscripts differ (P < 0.01)

- compared with calves in non-shaded pens

Cracked corn Sweet Bran¹

Ingredient, %

Alfalfa

Chopped prairie

Supplement²

¹Cargill Corn Milling (Blair, NE) ² Supplement pellet formulated to contain (DM basis) 11.5% crude protein, 0.60% phosphorus, 4.7% salt, 0.80% potassium, 2.5% fat, and 307.2 g/ton monensin (Rumensin; Elanco, Greenfield, IN)

Score	
0	No panting. R
	Slight panting
1.0	breaths per m
	Moderate pan
1.5	~60 to 90 brea
2.0	Fast Panting,
	Fast Panting,
2.5	minute
	Open mouth p
3.0	150 breaths p
	Open mouth p
3.5	for short perio
	Open mouth v
4.0	extended, and
	Open mouth p
15	drooling may

Treatment

Conclusions

• Final body weights, following gut equilibration were greater for limit-fed calves compared with calves fed for *ad libitum* intake and greater for calves in shaded pens

• Average daily gains were greater from d 0-97 for shaded calves compared with non-shaded calves

• F:G was lower in limit-fed calves compared with calves fed for *ad libitum* intake and calves in shaded pens compared with calves in non-shaded pens from d 0-97 • Daily rumination was less for limit-fed calves compared with calves fed for ad libitum intake

• Water usage was lower for limit-fed calves compared with calves fed for *ad libitum* intake and for calves provided shade when compared with calves in non-shaded pens • Mean panting score was lower for calves in shaded pens compared with calves in non-shaded pens

• Stocker calf producers can potentially utilize shade in conjunction with limit-fed high energy diets to improve feed efficiency and decrease water usage • In addition, shade can potentially be used in stocker calf operations to improve animal comfort

Diet Composition

DM	45	60	53
	8.6	38.8	23.8
	40.0	40.0	40.7
	22.5	6.5	14.2
e hay	22.5	6.5	14.4
	6.4	8.2	6.9

Animal Comfort

Description

- Respiration <60 breaths per minute
- g, mouth closed, no drool, easy to see chest movement. Respiration ~60 to 90 nnute
- nting, no drool present, easy to see chest movement, mouth closed. Respiration aths per minute
- drool present, mouth closed. Respiration ~90 to 120 breaths per minute drool present, occasional mouth panting. Respiration ~90 to 120 breaths per
- panting, excessive drooling, neck extended, head held up. Respiration ~120 to per minute
- panting, excessive drooling, tongue slightly extended or occasionally extended ods. Respiration ~120 to 150 breaths per minute
- with extended tongue for a prolonged period, excessive drooling, neck
- head up. Respiration ~120 to 150 breaths per minute
- panting, extended tongue, neck extended, head up, visible breaths from flank, be ceased. Respiration ~120 to 150 breaths per minute