Rational Development of Influenza Vaccines: NDV-based influenza vaccines for poultry and livestock

Igor Morozov, DVM, PhD
Kansas State University
Swine Day 2016
Manhattan, Kansas. November 17, 2016
Presentation outline

- Influenza Virus and Evolution of Influenza
- Universal Influenza Vaccine Concept
- Newcastle Disease Virus (NDV) as Vaccine Vector for Influenza
- Development and testing of NDV-based vaccines against different serotypes of Avian Influenza
- Summary/Conclusions
Influenza Viruses

- RNA viruses
- Family: *Orthomyxoviridae*
 - Influenza A: birds, swine, humans, other species
 - Influenza B: humans, seal, ferret, swine
 - Influenza C: humans
 - Influenza D: cattle

- 80-120 nm
- 11 genes on 8 segments of RNA
- Proteins: HA, NA, NP, M1, M2, NS1, NS2, PA, PB1, PB1-F2 and PB2

Nature Reviews Microbiology 3, 592 (2005)
Evolution of Influenza Viruses

- **Antigenic Drift**: small changes in the HA and NA surface antigens of the virus; often causing an epidemic/epizootic

- **Antigenic Shift (reassortment)**: influenza viruses reassort, i.e. they acquire completely new RNA segments/antigens; new antigens have not seen before by humans, and then the novel reassortant influenza virus will spread uncontrollably, causing a **pandemic**
In the late 1990s, *triple reassortant H3N2 and H1N2* swine viruses were isolated from U.S. swine: human H3N2, North American avian, and classical swine viruses -> circulated in North American pig populations

A triple reassortant swine virus reassorted with a Eurasian avian-like swine virus, that are now circulating in humans -> *pandemic H1N1*
The function of the HA protein:

- **A membrane-distal globular head domain:** mediates host-cell receptor binding
 - Immunodominant
 - Highly variable

- **A membrane-proximal stalk domain:** directs envelope fusion with the host cell
 - Immuno-subdominant
 - Highly Conserved

The Universal Influenza Vaccine Concept

- Concept is based on shifting the protective humoral immune response towards the antigenically conserved HA stalk region
- Protects against homologous, drifted and shifted influenza virus strains

Example:

a) cH6/1 HA
 - Conserved stalk domain (membrane proximal)
 - Globular head domain (membrane distal)

b) Pre-existing immunity to full-length H1 HA
 - Boost with cH5/1 HA
 - Boost with cH6/1 HA

Florian Krammer & Peter Palese: Nat Immunol, 2014
Jan;15(1):3-5. doi: 10.1038/ni.2761
Universal Influenza Vaccine Study in Pigs

Prime: chimeric influenza HA – H9
Boost: chimeric influenza HA – H8
Second boost: chimeric influenza HA - H5

A/Puerto Rico/8/1034/PR8 H1 stalk

1. Prime vaccination with Live influenza B virus expressing cH9/H1
2. First boost with inactivated influenza virus construct expressing cH8/H1
3. Second boost with an inactivated influenza virus expressing cH5/H1
4. Booster vaccinations and challenge (pH1N1 CA9) were done 4 weeks apart
5. Piglets enrolled in the study had maternal antibodies to pH1N1
Summary and Conclusions

- Virus titer in nasal swabs of universal vaccine group was decreased on 5 dpc (10^2 vs 10^5 in controls)

- Virus was not detected in BALF of universal vaccine group (Vs 10^3 in controls)

- Universal vaccine group showed significant reduction in macroscopic lung lesions (1% vs 5% in controls)
NDV-based Vaccine Candidates

• Family *Paramyxoviridae*

• Single-stranded, negative sense RNA genome

• Genome is approximately 15 kb in length.

• Deadly disease for poultry – use of LaSota vaccine strain

• Reverse genetics available (based on attenuated NDV LaSota strain)

• Recombinant NDV production using reverse genetics is well established (4 weeks!!)

Man-Seong Park, John Steel, Adolfo Garcia-Sastre et al *PNAS, 2006: 8203-8208*
Advantages of NDV-based vaccines:

- Are able to differentiate Infected from Vaccinated Animals (DIVA).
- System usable to rapidly develop influenza vaccines based on circulating strains --- within 4-6 weeks
- Prevents both NDV and influenza infections --- one stone-two birds approach.
- NDV vector has been licensed by Avimex Inc. for veterinary purposes, and is being currently used for the manufacturing of H5 influenza vaccines for poultry in Mexico.
Highly Pathogenic Avian Influenza Viruses (subtype H5; clade 2.3.4.4) outbreaks in the U.S.

- 216/219 outbreaks caused by the novel reassortant H5N2

- H5N8: an Eurasian virus
- H5N2: reassortant virus between Eurasian H5N8 and North American LPAIVs (PB1, NP and NA).
- H5N1: reassortant virus between Eurasian H5N8 and North American LPAIVs (PB1, PA, NA and NS).
Pathogenicity of highly pathogenic H5Nx viruses in 2-week-old chickens

1. A/American green-winged teal/WA/195750/2014 (H5N1)
2. A/turkey/MN/9845-4/2015 (H5N2)
3. A/gyrfalcon/WA/41088/2014 (H5N8)

Survival rates (%)

Days post challenge

H5N2 > H5N8 > H5N1

H5N1 > H5N2 > H5N8

H5N2: A/turkey/Minnesota/9845-4/2015 (10^6 TCID_{50})
Generation and characterization of recombinant NDV virus expressing HA of highly pathogenic H5N2 virus

A/chicken/Iowa/04-20/2015 (H5N2)

mock
NDV LaSota (no insert)
NDV-H5

mouse serum anti-NDV

human MAb anti-HA
1) Collect blood samples at D0, D14 and D28 after vaccination;
2) Collect Oropharyngeal and cloacal swabs at D1, D3, D6, D9 and D14 post challenge;
3) Necropsy 5 or 4 chickens at D3 and D5 post challenge.
Survival rates of chickens challenged with a HPAI H5N2 virus

Days post challenge

Survival rates (%)

H5N2: A/turkey/Minnesota/9845-4/2015 (10^6 TCID_{50})
Clinical Signs of vaccinated/mock-vaccinated chickens

A. No clinical signs were observed in NDV-H5 vaccinated group
B. Mock-vaccinated chickens showed typical clinical signs of highly pathogenic H5N2 infection
 - 100% mortality rate in control H5N2 infected chickens
Virus titers of oropharyngeal and cloacal swabs collected from chickens after challenge

<table>
<thead>
<tr>
<th></th>
<th>Oropharyngeal</th>
<th>Cloacal</th>
<th>Oropharyngeal</th>
<th>Cloacal</th>
<th>Oropharyngeal</th>
<th>Cloacal</th>
<th>Oropharyngeal</th>
<th>Cloacal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dpc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDV-H5 Live</td>
<td>1.70*</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td></td>
<td>(1/20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDV-H5 Killed</td>
<td>2.50±0.00</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td></td>
<td>(2/15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.43±0.18</td>
<td><1.0</td>
<td>3.18±0.31</td>
<td>1.70±0.00</td>
<td>N/A#</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(9/15)</td>
<td></td>
<td>(8/8)</td>
<td>(2/8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Log$_{10}$TCID$_{50}$/mL

#: all control chickens died within 5 days post challenge
2nd Chicken Study: Evaluate Mass Application of NDV-H5 vaccine

0 dpv
First vaccination

20 dpv
Challenge

34 dpv
Observation period

1X dose of NDV-H5

H5N2: 10^6 TCID50/chicken

Necropsy at 2 and 4 dpc

Mock Control

Coarse-Spray Vaccination

2-week old chickens

19

10

4 and 5

5
- 70% of Vaccinates survived until the end of the observation period (14 DPC)
- All Controls died or were euthanized due to severe clinical signs on 3 DPC
Mass application experiment: Virus shedding

<table>
<thead>
<tr>
<th></th>
<th>1 dpc</th>
<th>3 dpc</th>
<th>5 dpc</th>
<th>7 dpc</th>
<th>9 dpc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tracheal</td>
<td>Cloacal</td>
<td>Tracheal</td>
<td>Cloacal</td>
<td>Tracheal</td>
</tr>
<tr>
<td>NDV-H5 1dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70*</td>
<td><1.0</td>
<td>2.90±0.10</td>
<td>2.80±0.50</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>(1/19)</td>
<td>(2/11)</td>
<td>(2/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td><1.0</td>
<td>2.50±0.33</td>
<td>2.33±0.58</td>
<td>N/A#</td>
<td>N/A#</td>
</tr>
<tr>
<td></td>
<td>(4/10)</td>
<td>(4/5)</td>
<td>(3/5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : Log_{10}\text{TCID}_{50}/mL

#: All control chickens were dead at 3 dpi
Summary and Conclusions

- A universal influenza vaccine for pigs seems feasible even in the presence of maternal antibodies.

- At this point the vaccination scheme with multiple vaccination rounds makes universal vaccines not feasible for the swine industry.

- Pathogenicity studies in chickens showed different virulence of the U.S. isolates of intercontinental H5Nx HPAIVs.

- Both NDV-H5-based live and killed vaccines completely protected chickens from clinical signs and mortality, after challenge with the HPAIV A/turkey/MN/9845-4/2015 (H5N2).

- Mass application of the live NDV-H5 for chickens seems feasible.

- NDV-H5-based live and killed vaccines are promising vaccine candidates in chickens against intercontinental H5Nx viruses suitable for mass application.
Acknowledgements

Kansas State University

Juergen A. Richt’s Group
Igor Morozov
Haixia Liu
Sun-Young Sunwoo
Tammy Koopman
Chester Mcdowell
Vinay Shivanna
Aaron Balogh
Abaineh Endalew
Sally Davis (Pathologist)

Wenjun Ma’s group
Jingjiao Ma
Jinhwa Lee
Yuekun Lang
Michael Duff
Yonghai Li
Abdou Nagy
Yuhao Li
Jianmei Yang
Dingping Bai

Icahn School of Medicine, NYC
Adolfo García-Sastre
Ignacio Mena

Financial support:
• State of Kansas (National Bio and Agro-Defense Facility Transition Fund);
• Avimex Animal Health, Mexico;
• Department of Homeland Security, Center of Excellence CEEZAD
Thank you!

Visit us at: http://ceezad.org
E-mail: ceezad@ksu.edu
HI antibody titers of chickens vaccinated with different NDV-H5 vaccines

NDV-H5 Live

1st vaccination

![Graph](image1)

booster

![Graph](image2)

NDV-H5 killed

1st vaccination

![Graph](image3)

![Graph](image4)
Virus titers of tissues collected from chickens after challenge

<table>
<thead>
<tr>
<th></th>
<th>Lung</th>
<th>Spleen</th>
<th>Bursa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 dpc 5 dpc</td>
<td>3 dpc 5 dpc</td>
<td>3 dpc 5 dpc</td>
</tr>
<tr>
<td>NDV-H5 Live</td>
<td><1.0 <1.0</td>
<td><1.0 <1.0</td>
<td>2.50±0.00^ (1/5)</td>
</tr>
<tr>
<td>NDV-H5 Killed</td>
<td><1.0 <1.0</td>
<td><1.0 <1.0</td>
<td><1.0 <1.0</td>
</tr>
<tr>
<td>Control</td>
<td>3.70±0.35* (7/8)</td>
<td>2.86±0.46 (5/8)</td>
<td>3.67±0.36 (7/8)</td>
</tr>
</tbody>
</table>

*: Log$_{10}$TCID$_{50}$/mL
#: all control chickens died in 5 days post challenge
^: IHC negative: most likely cross-contamination