And finally…
A cure for PRRS!

Raymond (Bob) Rowland
K-State Swine Day Progress Report
November 17, 2016
Manhattan
Genetic approaches for improving swine health in response to PRRSV infection
Raymond (Bob) Rowland- Kansas State University
browland@vet.k-state.edu

Collaborators

Randy Prather, University of Missouri- Genetically modified pigs that are disease resistant

Jack Dekkers, Iowa State University- Genomic markers for breeding disease resistance

Joan Lunney, ARS-USDA- Genetics of the response of pigs to infection
Porcine reproductive and respiratory syndrome (PRRS)

“Reproductive Failure of Unknown Etiology”
Kerry K. Keffaber, 1989, AASP
1. Influenza-like clinical signs
2. Mid- to late-term abortions
3. Pre-weaning mortality
4. Poor growth performance

$14 billion in losses ($600 million/year)
PRRS is a production system disease
Endemic phase with outbreaks of severe disease

Persistence in a production system
Stealthy
Easily transmitted
Persistent
Participates in polymicrobial diseases

2003-Eric Neumann

Viremia
Persistence in a population and within a pig
Day after infection
The greatest cost of PRRSV is wasted feed

- Sick and dead pigs
- Slow growing pigs
- Secondary infections

Nutritional, Environmental and Social Impacts

Corn Prices
Integrated approach for PRRS control

Disease Control
- Vaccines
- Detection
- Ecology
- Epidemiology
- Biosecurity
- Sociology

Nutrition
- Feed efficiency
- Feed formulation
- Microbiome

Pig Genetics
- Resistance
- Tolerance
- Resilience
- Vaccine readiness
- Genome editing

Getting back the 5-10% that PRRS takes
PRRS vaccines

- Modified live virus (MLV) vaccine introduced in the U.S. 1994- approved for use in PRRSV-infected herds
- MLV limitations—virus shedding, persistent infection, incomplete immune protection, inability to differentiate infected from vaccinated animals (DIVA), potential for reversion to virulence
- Killed vaccines are not effective
- Subversion of host immunity and antigenic variation have made further advances in vaccines difficult to achieve

Conclusions: Vaccines are a poor option for disease control and eradication- Vaccinated animals cannot be transported to PRRSV-free regions.
The application of genetics for improving animal health

• Marker selected breeding to improving response
 Genotyping
 GWAS

• Modify genes involved in response to infection
 Insertion of genes to promote resistance
 Deletion of genes involved in virus susceptibility
Important findings

• Approximately 40% of how a pig responds to PRRSV infection is inherited
• The remaining 60% is dependent on
 Maternal effects
 Environment
 Virus
• Impact- breed pigs for improved disease resistance
The favorable SSC4 marker, WUR, results in a 10% increase in weight and a decrease in viremia.

Key-Lock mechanism for virus entry into cells

PRRS Virus

Receptor (CD163)
Key-Lock mechanism for virus entry

Gene modification to remove the keyhole mechanism (CD163 receptor protein) and block infection
CRISPR/Cas 9 system: a revolution in genetic modification

• Traditional transgenic techniques
 Difficult and cumbersome
 Insertion of foreign DNA into the genome

• CRISPR- Genome editing
 Fast (3 months)
 No foreign DNA
 Imitates processes that normally occur during evolution or breeding
CRISPR/Cas 9 system

Gene of interest (CD163)

Guide sequences direct were the genome is cut

Molecular scissors cut out DNA segment

Segment is removed and the DNA ends rejoined

Guide sequence

........
Knocking out CD163 by deleting 11 of 2.7 billion bases of the pig genome (Randy Prather)

- Normal pig: CD163 is present
- CD163 knockout pig: CD163 is absent
December 7, 2015

Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus

Kristin M Whitworth¹, Raymond R R Rowland², Catherine L Ewen², Benjamin R Trible², Maureen A Kerrigan², Ada G Cino-Ozuna², Melissa S Samuel¹, Jonathan E Lightner³, David G McLaren³, Alan J Mileham³, Kevin D Wells¹ & Randall S Prather¹

a) CD163-Positive

b) No CD163

No CD163
No key-lock
No PRRSV

Virus

Antibody
Future directions

- National Bio and Agro-Defense Facility (NBAF)
- Refining the CD163 knockout
- Extending the technology to other pig viruses
Co-Directors
USDA ARS BARC
Joan Lunney
Kansas State University
RRR (Bob) Rowland
Iowa State University
Jack Dekkers

PHGC

Kansas NBAF Transition Fund

• NIFA award #2013-68004-20362
• National Pork Board
• Genome Canada
• LLNL
• Genus PIC

USDA | NIFA