The effects of maternal dietary supplementation of cholecalciferol (vitamin D_3) in conjunction with $25(OH)D_3$ on sow and pig performance Morgan T. Thayer, Jim L. Nelssen, Austin Langemeier, Jodi Morton, John M. Gonzalez, Stephanie R. Kruger, Zhining Ou, Andrew J. Makowski, and Jon R. Bergstrom # **Introduction** # Metabolites of Vitamin D₃ ### Vitamin D₃ (Cholecalciferol) - Formed in the skin from sunlight - Absorbed in the small intestine from the diet ### 25(OH)D₃ (Calcidiol) - Formed in the liver - Main circulating form - Reflects vitamin D status of the animal #### $1,25(OH)_2D_3$ (Calcitriol) - Formed in the kidney - Active hormone form - Regulate Ca and P levels in the blood - Key role during bone mineralization - Effects cell differentiation, proliferation, and growth in many tissues ### $24,25(OH)_2D_3$ (24,25-dihydroxyvitamin D_3) - Development of bone integrity - Healing of bone fractures ## Vitamin D₃ NRC Recommendations Sows ➤800 IU/kg Nursery ≥220 IU/kg Finishing > 150 IU/kg # 2016 Feeding Regimen Survey - A survey of current feeding regimens for vitamins and trace minerals in the US swine industry - Journal of Swine Health and Production - 18 producers with approximately 40% of US sow herd participated | - | Vitamin D survey | (IU/kg | |---|--|--------| | | - Gestation/lactation: | 1,762 | | | - Nursery: | 1,744 | | | Early/mid finishing: | 935 | | | Late finishing: | 770 | | Vitamin D contro | Is selected | (IU/kg) | |------------------|-------------|---------| |------------------|-------------|---------| | - | Gestation/Lactation: | 1,500 | |---|----------------------|-------| | - | Nursery: | 1,500 | | - | Early/mid finishing: | 1,000 | | - | Late finishing: | 800 | ## Impacts on Skeletal Muscle Increase in muscle fiber number of the LM of d 90 fetuses (Hines et al., 2013) and pigs at birth and weaning (Zhou et al., 2016) when the maternal diet contained 25(OH)D₃ ### Objective To determine if feeding a combination of vitamin D_3 (Rovimix D3, 500,000 IU/g; DSM Nutritional Products, Parsippany, NJ) and its more available metabolite, $25(OH)D_3$ (Hy-D, DSM Nutritional Products, Parsippany, NJ), influences sow performance, sow and piglet vitamin D_3 status, muscle development of the piglets, and subsequent growth performance | | Dietary Treatments | | | | | | |---|----------------------------|----------|----------------------------|----------|----------------------------|----------| | | 1 | | 2 | | 3 | | | | VitaminD ₃ , IU | Hy-D, μg | VitaminD ₃ , IU | Hy-D, μg | VitaminD ₃ , IU | Hy-D, μg | | Gestation | 1500 | | 500 | 25 | 1500 | 50 | | Lactation | 1500 | | 500 | 25 | 1500 | 50 | | Nursery 1 | 1500 | | 500 | 25 | 1500 | 50 | | Nursery 2 | 1500 | | 500 | 25 | 1500 | 50 | | Total vitamin D ₃ activity, IU | 1500 | | 1500 | | 3500 | | | Finisher 1 | 1000 | | | 25 | | 50 | | Finisher 2 | 1000 | | | 25 | | 50 | | Total vitamin D ₃ activity, IU | 1000 | | 1000 | | 2000 | | | Finisher 3 | 800 | | | 20 | | 40 | | Total vitamin D ₃ 800 activity, IU | | 800 | | 1600 | | | ### **Litter Characteristics** | | | Diet | | | | |----------------------------|-------------------------|--|---|-------|------------------| | | 1,500 IU D ₃ | 500 IU D ₃ + 25 μg 25(OH)D ₃ | 1,500 IU D ₃ +
50 μg 25(OH)D ₃ | SEM | Probability, P < | | Litter characteristics | | | | | | | Total born, n | 17.28 | 16.73 | 17.86 | 0.881 | 0.652 | | Born alive, % | 87.80 | 92.13 | 89.67 | 1.960 | 0.283 | | Stillborn, % | 9.53 | 6.93 | 9.42 | 5.048 | 0.891 | | Mummies, % | 3.90 | 2.27 | 2.86 | 2.771 | 0.864 | | Standardized liter size, n | 14.00 | 13.83 | 13.96 | 0.780 | 0.987 | | Weaning liter size, n | 13.00 | 13.09 | 13.00 | 0.754 | 0.996 | | Survivability, % | 93.08 | 95.07 | 93.57 | 1.766 | 0.706 | # Immunohistochemistry Birth Knowledge forLife # Immunohistochemistry Weaning ## Primary Muscle Fiber Number Birth P = 0.007SEM = 22,206 ^{ab}Means with different superscripts differ (P < 0.05) ## Secondary Muscle Fiber Number Birth ^{ab}Means with different superscripts differ (P < 0.05) # Piglet Serum 25(OH)D₃ Trt × Time, P < 0.001 Trt, P < 0.001 Time, P < 0.001 SEM = 0.27 ^{xyz}Indicates an effect of time within treatment (P < 0.05) ^{abc}Indicates an effect of treatment at that time point (P < 0.05) # Pig Serum 25(OH)D₃ Trt × Time, P < 0.001Trt, P < 0.001Time, P < 0.001SEM = 1.76 xyzIndicates an effect of time within treatment (P < 0.05) abc Indicates an effect of treatment at that time point (P < 0.05) # Colostrum/Milk 25(OH)D₃ Trt \times Time, P = 0.518Trt, P < 0.001Time, P = 0.001SEM = 0.09 Colostrum xyzIndicates an effect of time within treatment (P < 0.05) abcIndicates an effect of treatment at that time point (P < 0.05) ### Discussion - $\mathbf{1}$ Primary muscle fiber number in piglets at birth from sows fed 1,500 IU D_3 + 50 μ g 25(OH) D_3 compared to others - longer prenatal period of primary myogenesis which delayed the onset of secondary myogenesis ### Discussion - Milk concentrations of 25(OH)D₃ above the colostrum 25(OH)D₃ - $\mathbf{1}$ milk 25(OH)D₃ concentrations consumed by the piglets contributed to the increase in progeny vitamin D₃ status from birth to weaning ### Conclusion - Combining vitamin $D_3 + 25(OH)D_3$ in the maternal diet: - Improves vitamin D₃ status of the dam and progeny - Increases primary muscle fibers at birth - Does not change growth performance to market - To our knowledge, this is the first study investigating the effect of improving maternal vitamin D status on serum $24,25(OH)_2D_3$ of the piglets ## **Implications** Feeding combinations of vitamin D₃ and 25(OH)D₃ may eliminate the practice of orally dosing newborn piglets and could potentially improve carcass characteristics