The effects of maternal dietary supplementation of cholecalciferol (vitamin D_3) in conjunction with $25(OH)D_3$ on sow and pig performance

Morgan T. Thayer, Jim L. Nelssen, Austin Langemeier, Jodi Morton, John M. Gonzalez, Stephanie R. Kruger, Zhining Ou, Andrew J. Makowski, and Jon R. Bergstrom

Introduction

Metabolites of Vitamin D₃

Vitamin D₃ (Cholecalciferol)

- Formed in the skin from sunlight
- Absorbed in the small intestine from the diet

25(OH)D₃ (Calcidiol)

- Formed in the liver
- Main circulating form
- Reflects vitamin D status of the animal

$1,25(OH)_2D_3$ (Calcitriol)

- Formed in the kidney
- Active hormone form
- Regulate Ca and P levels in the blood
- Key role during bone mineralization
- Effects cell differentiation, proliferation, and growth in many tissues

$24,25(OH)_2D_3$ (24,25-dihydroxyvitamin D_3)

- Development of bone integrity
- Healing of bone fractures

Vitamin D₃ NRC Recommendations

Sows ➤800 IU/kg

Nursery ≥220 IU/kg

Finishing > 150 IU/kg

2016 Feeding Regimen Survey

- A survey of current feeding regimens for vitamins and trace minerals in the US swine industry
 - Journal of Swine Health and Production
 - 18 producers with approximately 40% of US sow herd participated

-	Vitamin D survey	(IU/kg
	- Gestation/lactation:	1,762
	- Nursery:	1,744
	 Early/mid finishing: 	935
	 Late finishing: 	770

Vitamin D contro	Is selected	(IU/kg)
------------------	-------------	---------

-	Gestation/Lactation:	1,500
-	Nursery:	1,500
-	Early/mid finishing:	1,000
-	Late finishing:	800

Impacts on Skeletal Muscle

Increase in muscle fiber number of the LM of d 90 fetuses (Hines et al., 2013) and pigs at birth and weaning (Zhou et al., 2016) when the maternal diet contained 25(OH)D₃

Objective

To determine if feeding a combination of vitamin D_3 (Rovimix D3, 500,000 IU/g; DSM Nutritional Products, Parsippany, NJ) and its more available metabolite, $25(OH)D_3$ (Hy-D, DSM Nutritional Products, Parsippany, NJ), influences sow performance, sow and piglet vitamin D_3 status, muscle development of the piglets, and subsequent growth performance

	Dietary Treatments					
	1		2		3	
	VitaminD ₃ , IU	Hy-D, μg	VitaminD ₃ , IU	Hy-D, μg	VitaminD ₃ , IU	Hy-D, μg
Gestation	1500		500	25	1500	50
Lactation	1500		500	25	1500	50
Nursery 1	1500		500	25	1500	50
Nursery 2	1500		500	25	1500	50
Total vitamin D ₃ activity, IU	1500		1500		3500	
Finisher 1	1000			25		50
Finisher 2	1000			25		50
Total vitamin D ₃ activity, IU	1000		1000		2000	
Finisher 3	800			20		40
Total vitamin D ₃ 800 activity, IU		800		1600		

Litter Characteristics

		Diet			
	1,500 IU D ₃	500 IU D ₃ + 25 μg 25(OH)D ₃	1,500 IU D ₃ + 50 μg 25(OH)D ₃	SEM	Probability, P <
Litter characteristics					
Total born, n	17.28	16.73	17.86	0.881	0.652
Born alive, %	87.80	92.13	89.67	1.960	0.283
Stillborn, %	9.53	6.93	9.42	5.048	0.891
Mummies, %	3.90	2.27	2.86	2.771	0.864
Standardized liter size, n	14.00	13.83	13.96	0.780	0.987
Weaning liter size, n	13.00	13.09	13.00	0.754	0.996
Survivability, %	93.08	95.07	93.57	1.766	0.706

Immunohistochemistry Birth

Knowledge forLife

Immunohistochemistry Weaning

Primary Muscle Fiber Number Birth

P = 0.007SEM = 22,206

^{ab}Means with different superscripts differ (P < 0.05)

Secondary Muscle Fiber Number Birth

^{ab}Means with different superscripts differ (P < 0.05)

Piglet Serum 25(OH)D₃

Trt × Time, P < 0.001 Trt, P < 0.001 Time, P < 0.001 SEM = 0.27

^{xyz}Indicates an effect of time within treatment (P < 0.05) ^{abc}Indicates an effect of treatment at that time point (P < 0.05)

Pig Serum 25(OH)D₃

Trt × Time, P < 0.001Trt, P < 0.001Time, P < 0.001SEM = 1.76

xyzIndicates an effect of time within treatment (P < 0.05)

 abc Indicates an effect of treatment at that time point (P < 0.05)

Colostrum/Milk 25(OH)D₃

Trt \times Time, P = 0.518Trt, P < 0.001Time, P = 0.001SEM = 0.09

Colostrum

xyzIndicates an effect of time within treatment (P < 0.05) abcIndicates an effect of treatment at that time point (P < 0.05)

Discussion

- $\mathbf{1}$ Primary muscle fiber number in piglets at birth from sows fed 1,500 IU D_3 + 50 μ g 25(OH) D_3 compared to others
 - longer prenatal period of primary myogenesis which delayed the onset of secondary myogenesis

Discussion

- Milk concentrations of 25(OH)D₃ above the colostrum 25(OH)D₃
 - $\mathbf{1}$ milk 25(OH)D₃ concentrations consumed by the piglets contributed to the increase in progeny vitamin D₃ status from birth to weaning

Conclusion

- Combining vitamin $D_3 + 25(OH)D_3$ in the maternal diet:
 - Improves vitamin D₃ status of the dam and progeny
 - Increases primary muscle fibers at birth
 - Does not change growth performance to market
- To our knowledge, this is the first study investigating the effect of improving maternal vitamin D status on serum $24,25(OH)_2D_3$ of the piglets

Implications

 Feeding combinations of vitamin D₃ and 25(OH)D₃ may eliminate the practice of orally dosing newborn piglets and could potentially improve carcass characteristics

