The effects of maternal dietary supplementation of cholecalciferol (vitamin D₃) in conjunction with 25(OH)D₃ on sow and pig performance

Morgan T. Thayer, Jim L. Nelssen, Austin Langemeier, Jodi Morton, John M. Gonzalez, Stephanie R. Kruger, Zhining Ou, Andrew J. Makowski, and Jon R. Bergstrom
Introduction

Vitamin D₃

25(OH)D₃

Hy·D®

DSM Nutritional Products, Parsippany, NJ
Kitson and Roberts, 2012

24-hydroxylation

CYP24A1

25-Hydroxyvitamin D

D_{25}

D_{3}

D_{4}

Absorption in small intestine
- Packaging into chylomicrons
- Lymphatic drainage

UV-B radiation
(290-315 nm)

Sun

Epidermis

Pre Vitamin D

DHC7

Liver

CYP27A1

25-Hydroxyvitamin D

CYP2R1

24,25(OH)_{2}D

24,25(OH)_{2}D

1a, 25(OH)_{2}D

1α-hydroxylation

CYP27B1

Bound to DBP

Cell

Adipocytes

K-RXR VDRE

Binding to VDRE

Regulation of gene expression

K-State

Research and Extension

Knowledge for Life
Kitson and Roberts, 2012; Bar et al., 1980

Non-genomic mechanism
- Intestinal Ca absorption
- Opening of gated Ca channels
- Ca uptake by osteoblasts
- Ca uptake by muscle fibers
Metabolites of Vitamin D₃

<table>
<thead>
<tr>
<th>Vitamin D₃ (Cholecalciferol)</th>
<th>1,25(OH)₂D₃ (Calcitriol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Formed in the skin from sunlight</td>
<td>- Formed in the kidney</td>
</tr>
<tr>
<td>- Absorbed in the small intestine from the diet</td>
<td>- Active hormone form</td>
</tr>
<tr>
<td></td>
<td>- Regulate Ca and P levels in the blood</td>
</tr>
<tr>
<td></td>
<td>- Key role during bone mineralization</td>
</tr>
<tr>
<td>25(OH)D₃ (Calcidiol)</td>
<td>- Effects cell differentiation, proliferation, and growth in many tissues</td>
</tr>
<tr>
<td>- Formed in the liver</td>
<td></td>
</tr>
<tr>
<td>- Main circulating form</td>
<td></td>
</tr>
<tr>
<td>- Reflects vitamin D status of the animal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>24,25(OH)₂D₃ (24,25-dihydroxyvitamin D₃)</td>
<td></td>
</tr>
<tr>
<td>- Development of bone integrity</td>
<td></td>
</tr>
<tr>
<td>- Healing of bone fractures</td>
<td></td>
</tr>
</tbody>
</table>

Dittmer and Thompson, 2011; Gropper et al., 2004; Seo et al., 1997
Vitamin D$_3$

NRC Recommendations

<table>
<thead>
<tr>
<th>Stage</th>
<th>Requirement (IU/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sows</td>
<td>800</td>
</tr>
<tr>
<td>Nursery</td>
<td>220</td>
</tr>
<tr>
<td>Finishing</td>
<td>150</td>
</tr>
</tbody>
</table>
2016 Feeding Regimen Survey

- A survey of current feeding regimens for vitamins and trace minerals in the US swine industry

- Journal of Swine Health and Production
- 18 producers with approximately 40% of US sow herd participated

- Vitamin D survey (IU/kg)
 - Gestation/lactation: 1,762
 - Nursery: 1,744
 - Early/mid finishing: 935
 - Late finishing: 770

Vitamin D controls selected (IU/kg)
- Gestation/Lactation: 1,500
- Nursery: 1,500
- Early/mid finishing: 1,000
- Late finishing: 800

Flohr et al., 2016b
Impacts on Skeletal Muscle

- Increase in muscle fiber number of the LM of d 90 fetuses (Hines et al., 2013) and pigs at birth and weaning (Zhou et al., 2016) when the maternal diet contained 25(OH)D₃
Objective

To determine if feeding a combination of vitamin D₃ (Rovimix D3, 500,000 IU/g; DSM Nutritional Products, Parsippany, NJ) and its more available metabolite, 25(OH)D₃ (Hy-D, DSM Nutritional Products, Parsippany, NJ), influences sow performance, sow and piglet vitamin D₃ status, muscle development of the piglets, and subsequent growth performance.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VitaminD₃, IU</td>
<td>Hy-D, µg</td>
<td>VitaminD₃, IU</td>
</tr>
<tr>
<td>Gestation</td>
<td>1500</td>
<td>---</td>
<td>500</td>
</tr>
<tr>
<td>Lactation</td>
<td>1500</td>
<td>---</td>
<td>500</td>
</tr>
<tr>
<td>Nursery 1</td>
<td>1500</td>
<td>---</td>
<td>500</td>
</tr>
<tr>
<td>Nursery 2</td>
<td>1500</td>
<td>---</td>
<td>500</td>
</tr>
<tr>
<td>Total vitamin D₃ activity, IU</td>
<td>1500</td>
<td>1500</td>
<td>3500</td>
</tr>
<tr>
<td>Finisher 1</td>
<td>1000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Finisher 2</td>
<td>1000</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total vitamin D₃ activity, IU</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Finisher 3</td>
<td>800</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total vitamin D₃ activity, IU</td>
<td>800</td>
<td>800</td>
<td>1600</td>
</tr>
</tbody>
</table>
Litter Characteristics

<table>
<thead>
<tr>
<th>Litter characteristics</th>
<th>Diet</th>
<th>SEM</th>
<th>Probability, P <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total born, n</td>
<td>1,500 IU D₃</td>
<td>500 IU D₃ + 25 μg 25(OH)D₃</td>
<td>1,500 IU D₃ + 50 μg 25(OH)D₃</td>
</tr>
<tr>
<td>Born alive, %</td>
<td>17.28</td>
<td>16.73</td>
<td>17.86</td>
</tr>
<tr>
<td>Stillborn, %</td>
<td>87.80</td>
<td>92.13</td>
<td>89.67</td>
</tr>
<tr>
<td>Mummies, %</td>
<td>9.53</td>
<td>6.93</td>
<td>9.42</td>
</tr>
<tr>
<td>Standardized liter size, n</td>
<td>14.00</td>
<td>13.83</td>
<td>13.96</td>
</tr>
<tr>
<td>Weaning liter size, n</td>
<td>13.00</td>
<td>13.09</td>
<td>13.00</td>
</tr>
<tr>
<td>Survivability, %</td>
<td>93.08</td>
<td>95.07</td>
<td>93.57</td>
</tr>
</tbody>
</table>
Immunohistochemistry
Birth
Immunohistochemistry
Weaning
Primary Muscle Fiber Number
Birth

\[P = 0.007 \]
\[SEM = 22,206 \]

\begin{align*}
&1,500 \text{ IU D}_3 \quad 96,957^b \\
&500 \text{ IU D}_3 + 25 \mu g 25(\text{OH})\text{D}_3 \quad 111,124^b \\
&1,500 \text{ IU D}_3 + 50 \mu g 25(\text{OH})\text{D}_3 \quad 174,054^a
\end{align*}

\text{abMeans with different superscripts differ (}P < 0.05\text{)}
Secondary Muscle Fiber Number

Birth

\[\begin{align*}
1,749,488 & \quad 1,882,926 \\
1,694,981 &
\end{align*} \]

\(P > 0.05 \)

\(\text{SEM} = 169,975 \)

\(ab \)Means with different superscripts differ \((P < 0.05)\)
Piglet Serum 25(OH)D$_3$

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Birth</th>
<th>Weaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,500 IU D3</td>
<td>2.0bx</td>
<td>4.7by</td>
</tr>
<tr>
<td>500 IU D3 + 25 μg 25(OH)D3</td>
<td>3.6cy</td>
<td>7.6ay</td>
</tr>
<tr>
<td>1,500 IU D3 + 50 μg 25(OH)D3</td>
<td>2.1abx</td>
<td></td>
</tr>
</tbody>
</table>

Trt × Time, $P < 0.001$
Trt, $P < 0.001$
Time, $P < 0.001$

SEM = 0.27

Indicates an effect of time within treatment ($P < 0.05$)
Indicates an effect of treatment at that time point ($P < 0.05$)
Pig Serum 25(OH)D₃

Trt × Time, $P < 0.001$
Trt, $P < 0.001$
Time, $P < 0.001$
SEM = 1.76

1,500 IU D3 500 IU D3 + 25 μg 25(OH)D3 1,500 IU D3 + 50 μg 25(OH)D3

16.6cx 36.4bx 17.8cx

61.3ax 30.0by 17.8cx

53.4ay

xyz Indicates an effect of time within treatment ($P < 0.05$)
abc Indicates an effect of treatment at that time point ($P < 0.05$)
Colostrum/Milk 25(OH)D$_3$

- 1,500 IU D3
- 500 IU D3 + 25 μg 25(OH)D3
- 1,500 IU D3 + 50 μg 25(OH)D3

Trt × Time, $P = 0.518$
Trt, $P < 0.001$
Time, $P = 0.001$
SEM = 0.09

Indicates an effect of time within treatment ($P < 0.05$)
Indicates an effect of treatment at that time point ($P < 0.05$)
Discussion

- No effect on sow and litter performance due to vitamin D

- Primary muscle fiber number in piglets at birth from sows fed 1,500 IU D₃ + 50 μg 25(OH)D₃ compared to others
 - longer prenatal period of primary myogenesis which delayed the onset of secondary myogenesis
Discussion

- Milk concentrations of $25(\text{OH})D_3$ above the colostrum $25(\text{OH})D_3$
 - $25(\text{OH})D_3$ concentrations consumed by the piglets contributed to the increase in progeny vitamin D_3 status from birth to weaning
Conclusion

- Combining vitamin D₃ + 25(OH)D₃ in the maternal diet:
 - Improves vitamin D₃ status of the dam and progeny
 - Increases primary muscle fibers at birth
 - Does not change growth performance to market

- To our knowledge, this is the first study investigating the effect of improving maternal vitamin D status on serum 24,25(OH)₂D₃ of the piglets
Implications

- Feeding combinations of vitamin D₃ and 25(OH)D₃ may eliminate the practice of orally dosing newborn piglets and could potentially improve carcass characteristics