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ABSTRACT: Efficient management of swine 
production systems requires understanding of 
complex reproductive physiological mechanisms. 
Our objective in this study was to investigate po-
tential causal biological relationships between re-
productive performance traits in high-producing 
gilts and sows. Data originated from a nutrition ex-
periment and consisted of 200 sows and 440 gilts 
arranged in body weight blocks and randomly as-
signed to dietary treatments during late gestation at 
a commercial swine farm. Reproductive perform-
ance traits consisted of weight gain during late ges-
tation, total number born and number born alive 
in a litter, born alive average birth weight, wean-
to-estrous interval, and total litter size born in the 
subsequent farrowing. Structural equation models 
combined with the inductive causation algorithm, 
both adapted to a hierarchical Bayesian frame-
work, were employed to search for, estimate, and 
infer upon causal links between the traits within 
each parity group. Results indicated potentially dis-
tinct reproductive networks for gilts and for sows. 

Sows showed sparse connectivity between repro-
ductive traits, whereas the network learned for 
gilts was densely interconnected, suggesting closely 
linked physiological mechanisms in younger fe-
males, with a potential for ripple effects throughout 
their productive lifecycle in response to early im-
plementation of tailored managerial interventions. 
Cross-validation analyses indicated substantial net-
work stability both for the general structure and for 
individual links, though results about directionality 
of such links were unstable in this study and will 
need further investigation. An assessment of rela-
tive statistical power in sows and gilts indicated that 
the observed network discrepancies may be par-
tially explained on a biological basis. In summary, 
our results suggest distinctly heterogeneous mech-
anistic networks of reproductive physiology for gilts 
and sows, consistent with physiological differences 
between the groups. These findings have potential 
practical implications for integrated understanding 
and differential management of gilts and sows to 
enhance efficiency of swine production systems.
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INTRODUCTION

Female reproductive physiology involves 
complex mechanisms that need to be integrated 
and managed efficiently in swine production sys-
tems. Understanding the functional links that 
underlie the relationship between multiple repro-
ductive performance traits can provide valuable 
mechanistic insight, and thus enhance efficiency of 
the decision-making process in swine production 
systems. Classical multiple-trait models (MTMs) 
can be used to simultaneously consider multiple 
traits and study their probabilistic relationships, ex-
pressed as correlations or covariances (Henderson 
and Quaas, 1976; Van Vleck and Edlin, 1984). 
However, classical MTMs are limited in that they 
cannot assess directionality of such relationships 
(Valente and Rosa, 2013), thus hindering their use 
for exploring causal relationships within a network, 
as might be of interest in complex systems with 
multiple interrelated traits.

Structural equation models (SEMs) (Haavelmo, 
1943) are a special type of MTM that, under some 
assumptions, can accommodate directionality and 
thus potentially causal relationships in the links 
that define a functional network (Pearl, 2009). 
Thus, an SEM approach can facilitate a more com-
prehensive understanding of physiological mechan-
isms as an interconnected system, as opposed to an 
assortment of individual outcome traits, the rela-
tionship among which is evaluated only anecdotally 
or, at best, one at a time. Originally evolved from 
path analysis (Wright, 1934), SEMs were recently 
adapted to a mixed-model framework (Gianola 
and Sorensen, 2004), thereby enabling specification 
of data architecture, as is typically the case with 
designed experiments. Search algorithms, such as 
inductive causation (IC; Verma and Pearl, 1991), 
are also available to help investigate the network 
space while accounting for multiple levels of data 
structure (Valente et al., 2010). Given these devel-
opments, SEM are being increasingly used in the 
animal sciences, particularly in quantitative gen-
etics. Examples include beef cattle (Inoue et  al., 
2016), dairy cattle (de Maturana et al., 2009), dairy 
goats (de los Campos et al., 2006), swine (Varona 
and Sorensen, 2014), and quail (Valente et  al., 
2011), among others.

Here, our interest in causal network-type rela-
tionships is motivated by a recent swine experiment 
conducted to evaluate the effect of nutritional man-
agement during late gestation on multiple repro-
ductive performance traits in high-performing gilts 
and sows (Gonçalves et al., 2016). In that experi-
mental study, each trait was analyzed separately 

using a generalized linear mixed-model approach, 
whereby each trait represented related, though ar-
guably different, aspects of swine reproductive 
physiology. The randomization process in that ex-
periment granted causal inference of nutritional 
dietary treatment on each individual trait. In the 
study herein, we pursue a more comprehensive 
understanding of the reproductive physiological 
system as a whole, recognizing that, in addition to 
treatment effects, reproductive performance traits 
may also influence each other within the system.

The objective of this study was to investigate 
potential causal biological relationships between 
reproductive performance traits in high-producing 
gilts and sows in the context of a designed nutrition 
experiment. Using hierarchical SEM combined 
with IC, we search for, estimate, and infer upon 
potential causal network-type interrelationships 
between reproductive traits in sows and gilts. We 
further evaluate the stability of the learned network 
structures and assess potential differences in statis-
tical power between the parity groups.

MATERIALS AND METHODS

Data

Data were obtained from an experimental 
study on swine nutrition conducted at a commercial 
swine farm in northern Ohio under an experimental 
protocol approved by the Kansas State University 
Institutional Animal Care and Use Committee, 
as described by Gonçalves et al. (2016). The com-
plete experimental data consisted of observations 
from 1,102 females, including 361 sows and 741 
gilts. For each parity group (i.e., sows and gilts), the 
experimental design used for data collection con-
sisted of a randomized complete block design with 
blocks of 4 females defined along a body weight 
gradient. Within each block, 4 dietary treatments 
consisting of combinations of energy intake and 
dietary amino acids were randomly allocated. The 
complete description of the data is available in 
Gonçalves et al. (2016). The reproductive perform-
ance traits of interest, labeled j = 1,…, J, for J = 6, 
included female weight gain during late (day 90 to 
day 111) gestation (GAIN, in kilograms; j = 1), total 
number of piglets born (TB; j = 2) and number born 
alive (BA; j = 3) in a litter, and born alive average 
birth weight (BABW, in grams; j = 4), wean-to-
estrous interval (WEI, in days; j = 5), and total litter 
size born in the subsequent farrowing (SuTB; j = 6). 
Observations on GAIN were obtained as the dif-
ference in female body weight observed at day 90 
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and at day 111 of gestation. Observations on TB, 
BA, and BABW were collected simultaneously at 
the time of farrowing and preceded those obser-
vations on WEI, which in turn preceded data col-
lection on SuTB. Both TB and SuTB refer to total 
litter size and included piglets born alive, stillborns, 
and mummies. Only females with complete records 
on all 6 reproductive performance traits (i.e., no 
missing data) were considered for analyses in this 
study. Following data editing for removal of in-
complete records, the final dataset used for analysis 
consisted of 200 sows and 440 gilts arranged in 97 
and 222 body weight blocks, respectively. As a re-
sult, the dataset analyzed consisted of incomplete 
blocks that ranged in size from 1 to 4 females.

The Structural Equation Model

For each parity group, namely sows and gilts, 
we write a hierarchical SEM following Gianola and 
Sorensen (2004), as follows:

� yi = Λyi + Xiβ + Zib + ei (1)

where y′
i = [yi1, yi2 yi3 yi4 yi5 yi6]

′ i++s a vector of J = 6 
reproductive performance traits observed on the 
ith female (i = 1, 2, …, n; corresponding to n = 200 
sows or n = 440 gilts, respectively). Also, Λ is a J × 
J matrix composed by zeroes along the main diag-
onal and on the upper triangle, and unknown struc-
tural coefficient parameters λjj′ on the lower triangle 
(under a fully recursive specification) representing 
functional links between responses in the network. 
The structural coefficient λjj′ (j′ < j) describes the 
direct effect of trait yj′ on trait yj. For example, λ21 
represents the expected change in y2 per unit in-
crease in y1. Further, β′ = [β′

1 β
′
2 β

′
3 β

′
4 β

′
5 β

′
6  ] is a vector 

of unknown fixed-effect location parameters asso-
ciated with treatment factors through the design 
matrix Xi = diag(x′

i 1 x
′
i 2 x

′
i 3 x

′
i 4  x′

i 5 x′
i 6) unique to each 

subject i. Next, b′ = [b′
1 b

′
2 b

′
3 b

′
4 b

′
5 b

′
6 ] is a vector of  

unknown random effects associated with body 
weight blocks expressed in the design matrix 
Zi = diag(z′

i 1 z
′
i 2 z

′
i 3 z

′
i 4 z

′
i 5 z

′
i 6 ). Random effects b are 

assumed multivariate normally distributed with null 
mean vector and covariance matrix B, such that:

�

b ∼ MVN




0, B ⊗ Iq =




σ2
b1

σb12 σb13 σb14 σb15 σb16

σb12 σ2
b2

σb23 σb24 σb25 σb26

σb13 σb23 σ2
b3

σb34 σb35 σb36

σb14 σb24 σb34 σ2
b4

σb45 σb46

σb15 σb25 σb35 σb45 σ2
b5

σb56

σb16 σb26 σb36 σb46 σb56 σ2
b6




⊗ Iq




(2)

where q is the number of blocks within each parity 
group. Finally, e′

i  =  [ei1 ei2 ei3 ei4 ei5 ei6] is the cor-
responding set of residuals for the ith female, as-
sumed multivariate normally distributed with null 
mean vector and diagonal (co)variance matrix R, 
such that:

� ei ∼ MVN




0, R =




σ2
e1

0 0 0 0 0
0 σ2

e2
0 0 0 0

0 0 σ2
e3

0 0 0
0 0 0 σ2

e4
0 0

0 0 0 0 σ2
e5

0
0 0 0 0 0 σ2

e6







(3)
The assumption of a diagonal residual (co)variance 
matrix R is standard in the context of SEM to en-
sure parameter identifiability in an acyclic causal 
framework (Gianola and Sorensen, 2004). Any 
additional source of covariability (besides random 
effects) is attributed to structural coefficients in Λ 
and refers to functional relationships between traits 
(Gianola and Sorensen, 2004; Wu et al., 2007).

The IC Algorithm

We implemented the IC algorithm as adapted 
to mixed models by Valente et al. (2010) to search 
the space of network structures separately for each 
parity group. The search was conducted at the re-
sidual level of a MTM, that is, after conditioning 
on the random effects that characterize the experi-
mental design. This approach prevents the struc-
ture search from being confounded by correlations 
between traits that might be induced by the design 
structure of the data; this is analogous to the ap-
proach proposed by Valente et al. (2010) in the con-
text of quantitative genetics. Briefly, we first fit a 
hierarchical Bayesian SEM with a fully recursive 
specification equivalent to a standard MTM to the 
data. Posterior samples of the SEM parameters in 
matrices R and Λ were used to compute the pos-
terior densities for parameters of R* defined as the 
residual (co)variance matrix under the equivalent 
MTM, whereby R* =  (I − Λ)−1 R(I − Λ)−1′. Next, 
we used posterior samples of R* to compute partial 
residual correlations for each pair of reproductive 
performance traits, given all possible conditioning 
sets consisting of combinations of the remaining 
traits. Finally, we implemented the IC algorithm 
on such partial residual correlations between traits 
to make a series of statistical decisions intended to 
yield a learned network structure (Valente et  al., 
2010), as follows:
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Step 1: �For each pair of traits yj and yj′, evaluate all 
partial residual correlations conditional on 
every possible conditioning set of traits be-
sides the (j, jʹ) pair. If  all such partial correl-
ations differ from zero, connect the traits by 
an undirected link (e.g., yj ── yj′ ). Other-
wise, no connecting link is placed between 
the traits in that pair. After considering all 
pairs of traits, this step yields an undirected 
(skeleton) graph.

Step 2: �From the skeleton obtained in Step 1, con-
sider every pair of disconnected traits that 
share a common adjacent trait (e.g. yj and 
yj″ in yj ── yj′  ── yj″) and evaluate all par-
tial residual correlations between the pair 
that include the common adjacent trait (yj′) 
in the conditioning set. If  all such condi-
tional partial correlations differ from zero, 
direct the edges towards the common adja-
cent trait (i.e., yj → yj′ ← yj″); this identifies 
a network structure known as an unshielded 
collider. This step yields a partially directed 
graph (Pearl, 2009).

Step 3: �Based on the partially directed graph 
obtained from Step 2, orient as many un-
directed edges as possible without creating 
any new unshielded colliders nor any cycles. 
Graphs obtained in Step 3 represent a class 
of equivalent causal structures (i.e., struc-
tures that would result in the same space 
of joint probability distributions) (Pearl, 
2009). In a hierarchical modeling context, 
the IC algorithm is implemented on the re-
sidual (co)variance matrix R* (Valente et al., 
2010), such that equivalence classes are de-
fined in the space of residual joint probabil-
ity distributions.

The inferential basis for each of  the statistical de-
cisions made in Steps 1 and 2 of  the IC algorithm 
was the highest posterior density (HPD) interval of 
the partial residual correlations between traits and 
whether such intervals contained the value zero. We 
applied different probability contents of  the HPD 
interval, namely 70%, 75%, 80%, 85%, 90%, and 
95%, to learn the causal structures. Supplementary 
Figures 1–3 show the network structures recovered 
for sows (gilts) across the range of  evaluated prob-
ability contents of  HPD intervals. For sows, when 
85%, 90%, and 95% HPD intervals were applied, 
no links between any of  the reproductive traits 
were recovered; an 80% HPD interval was the 
highest probability content that recovered links in 
the network structure. For gilts, IC Steps 1 and 2 

using 95%, 90%, and 85% HPD intervals detected 
links between some of the reproductive traits 
(Supplementary Figure 2), though GAIN remained 
disconnected in all cases. An 80% HPD interval was 
the largest probability content that connected all 
traits in the gilt dataset (Supplementary Figure 3).  
For consistency of  reporting, we chose to proceed 
with 80% HPD intervals for both sows and gilts in 
an attempt to balance the probability of  missing 
true connections (Type II error) with the prob-
ability of  including false ones (Type I error). This 
is consistent with previous applications (Inoue 
et al., 2016).

After Step 3 of the IC algorithm, we used add-
itional information to direct any left-over undir-
ected edges, including temporal arrangement of 
traits and model fit comparisons based on Deviance 
Information Criterion (DIC) (Spiegelhalter et  al., 
2002). Models that better fit the data are charac-
terized by smaller DIC values, and generally differ-
ences of 7 or greater are considered indicative of 
improved model fit (Spiegelhalter et al., 2002).

Hierarchical Bayesian Implementation and 
Posterior Inference

The selected SEM specification was fit in a hier-
archical Bayesian framework implemented with 
Markov chain Monte Carlo (MCMC). The joint 
posterior distribution of all unknown parameters 
in the model was:

�

p(β, b, B, R,Λ|y) ∝ p (y | β, b, R,Λ) p (β)

p (b | B) p(B) p (R) p (Λ)

(4)
We used conditionally conjugate prior distributions 
to facilitate Gibbs sampling. Prior distributions for 
fixed-effects location parameters βj and each of the 
non-zero structural coefficients λjj′ in matrix Λ were 
assumed flat such that p

(
βj
)
∝ constant and p (λjj′) 

∝ constant for all j and j′. For each residual vari-
ance σ2

ej
 along the main diagonal of R, we gener-

ated a proxy for a flat, improper prior using as an 
instrument the density of a scale-inverse chi-square 
distribution and setting degrees of freedom vej = −1 
and scale parameter s2

ej
= 0. This proxy is consistent 

with the prior 
»

σ2
ej
∼ U(0, A), for any finite but 

sufficiently large value of A, such that the resulting 
distribution is vague, as recommended for variance 
components by Gelman (2006). For the block ef-
fects b, we specified a structural prior such that 
p (b|B) ∼ N(0, B) to allow for borrowing of in-
formation across traits within each block (i.e., block 
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level covariance parameters), and also across body 
weight blocks for each trait (i.e., block level vari-
ance parameters) (Robinson, 1991), as is common 
for random effects in a multivariate mixed-model 
framework. For the (co)variance matrix B, we im-
plemented a proxy for a vague prior using as an 
instrument the density of an inverse-Wishart dis-
tribution, setting degrees of freedom νB = −(J + 1)  
and specifying a J × J scale matrix of zeroes; this 
can be interpreted as a multivariate extension of the 
proxy used for prior specification on the residual 
variances.

All MCMC implementations were programmed 
in R software (R Development Core Team, 2017). 
For each parity group, the fully recursive SEM of 
Eq. (1) was fit using a single MCMC chain run for 
100,000 iterations after a burn-in period of 10,000 
cycles; one of every 3 samples were saved and fed 
into the IC algorithm for structure search, as ex-
plained in the previous section. For final inference, 
the selected SEM with a specification of causal 
structure determined by the IC algorithm was fit 
using a single MCMC chain run for 300,000 iter-
ations for a burn-in period of 10,000 cycles; one 
of every 3 samples were saved for inference. In 
all cases, convergence diagnostics were performed 
using the R package CODA (Cowles and Carlin, 
1996). Specifically, we monitored convergence 
for all hyperparameters using trace plots and the 
diagnostic testing approach proposed by Raftery 
and Lewis (1992). Furthermore, effective sample 
size (ESS) was estimated to evaluate the number 
of effectively independent samples amongst 
the autocorrelated MCMC samples for each 
hyperparameter (Sorensen et al., 1995). Length of 
MCMC chains was adjusted to ensure that ESS 
was greater than 800 for all hyperparameters. For 
each parameter of interest, we summarized pos-
terior inference using posterior means and 95% 
HPD intervals.

Assessment of Network Stability

For each parity group, we evaluated the sta-
bility of the learned networks using a Jackknife 
resampling approach adapted from Peñagaricano 
et  al. (2015) for implementation to a network 
learning context. More specifically, we modified 
the resampling strategy to leave-one-block-out 
of the dataset at a time (as opposed to leave-one-
observation-out). In each resampling iteration, the 
network structure was inferred from a new dataset 
by implementation of the IC algorithm on a fully 
recursive SEM specification based on 80% HPD 

intervals, as described in the previous section. We 
evaluated the stability of each individual link by 
assessing the frequency of presence or absence, as 
well as direction, in the networks learned from the 
new datasets obtained from resampling.

Power Assessment in Network Learning

Recall that the size and structure of the datasets 
available for gilts (i.e., 440 females; 222 blocks) was 
approximately twice of that available for sows (i.e., 
200 females; 97 blocks). Thus, it was of interest 
to assess whether any discrepancies in network 
learning might be due, at least partially, to differ-
ential power in the statistical decisions made to 
infer network structure. To evaluate this, we con-
structed 5 subsets of the gilt dataset by sampling it 
at random and without replacement; each gilt data 
subset mimicked the structure of the sow dataset 
in number of observations and number of blocks. 
For each gilt data subset, we learned network struc-
ture by implementing the mixed-model-adapted 
IC algorithm (Valente et al., 2011) as described in 
previous sections. We then compared the networks 
learnt from the gilt data subsets with those learnt 
from the complete datasets for gilts and for sows.

RESULTS

Descriptive Data Analyses

Descriptive statistics of the reproductive per-
formance traits are presented separately for sows 
and gilts in Table 1. Also, for each parity group, the 
empirical distribution of each trait is presented on 
the main diagonal of Fig. 1, along with pairwise 
scatterplots and empirical marginal Pearson cor-
relations in the lower and upper triangles of the 
figure, respectively. Except for WEI, reproductive 
performance traits showed approximately symmet-
rical empirical distributions, thereby supporting a 
normal approximation for modeling. By contrast, 
the empirical distribution of WEI was skewed to 
the right for both parity groups.

Pairwise scatterplots and marginal correlations 
described general similarities for both gilts and 
sows in the pairwise relationships between traits 
(Fig. 1), except for a few distinct patterns. For ex-
ample, GAIN was positively correlated to TB, BA, 
and BABW in both parity groups but the numerical 
magnitude of the correlation coefficient appeared 
to be at least doubled in sows relative to gilts. 
Furthermore, the marginal Pearson correlation co-
efficient between WEI and SuTB was significantly 
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different from zero for both groups, though of 
positive sign for gilts, and negative sign for sows. 
Overall, preliminary descriptive analyses suggested 
potential differences between gilts and sows in the 
network of interconnected reproductive traits. This 
finding motivated separate network analyses for 
each parity group.

Learned Network Structures Using the IC 
Algorithm

For each parity group, network structure was 
learned separately using the IC algorithm. Based 
on statistical decisions made on 80% HPD inter-
vals, the network recovered for sows included links 
only among TB, BA, and BABW, whereas GAIN, 
WEI, and SuTB remained unconnected. Moreover, 
the IC algorithm did not resolve directionality for 
any of  the links connecting TB, BA, and BABW in 
sows, thus yielding an undirected graph (Fig. 2A). 
It was not possible to further orient the links be-
tween BABW, BA, and TB based on temporal in-
formation because, in this study, these traits were 
realized simultaneously at farrowing. Therefore, for 
sows, we considered alternative SEMs connecting 
BABW, BA, and TB (Fig. 2B) that did not intro-
duce any new unshielded colliders (which would 
presumably have been detected in Step 2 of  the IC 
algorithm) and compared them for fit to data using 
DIC. Figure 2B shows competing SEM alterna-
tives for sows, of  which network (3) (i.e., BABW → 
BA → TB) was selected for further inference based 
on a DIC value smaller by 20 and 38 points from 
that of  directed networks (1) or (2), respectively.

For gilts, Steps 1 and 2 of the IC algorithm 
yielded a partially oriented graph depicting an 
interconnected network that linked all 6 repro-
ductive performance traits (Fig. 3A). Of special 
interest was the link between GAIN and BABW, 
the detection of which was pivotal to assess dir-
ectionality in the gilt network because this link 
formed an unshielded collider with BA (i.e., GAIN 
→ BABW ← BA). So directed, the link GAIN → 
BABW supported directionality for other links by 
negating unshielded colliders with TB (i.e., GAIN 
→ BABW → TB) as well as with traits indicative 
of longer-term reproductive performance, namely 
WEI (i.e., GAIN → BABW → WEI) and SuTB 
(i.e., GAIN → BABW → SuTB). These results fur-
ther oriented the remaining link connecting BA 
and TB as BA → TB to prevent formation of a 
cycle, as dictated by the IC algorithm. Overall, the 
IC algorithm applied to the gilt dataset concluded 
on an effect of GAIN on BABW (i.e., GAIN → T
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BABW), which in turn affected TB (i.e., BABW → 
TB). Also detected were effects of BA on TB (i.e., 
BA → TB) and on BABW (i.e., BA → BABW). 
Notably, the link connecting BA and BABW (i.e., 
BA → BABW) prevented TB to function as an un-
shielded collider between BABW and BA. Further, 
effects of BABW were detected on subsequent 

reproductive performance of gilts, as characterized 
by WEI and SuTB (i.e., BABW → WEI and BABW 
→ SuTB, respectively). Finally, a link between WEI 
and SuTB was detected in gilts, though the IC algo-
rithm was inconclusive about its directionality. We 
used temporal information to tentatively orient the 
link as WEI → SuTB and relied on DIC to further 

Figure 2. (A) Undirected graph of reproductive performance traits in sows detected by the inductive causation algorithm implemented with 
80% highest posterior density intervals. (B) Plausible structures within the equivalence class defined by traits connected in Panel (A). Links without 
arrowheads represent associations between traits; links with arrowheads represent causal effects from the trait on the arrow tail to the trait on the 
arrowhead. GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; BABW = born 
alive average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.

Figure 3. (A) Partially oriented graph of reproductive performance traits in gilts detected by the inductive causation algorithm implemented 
with 80% highest posterior density intervals. (B) Fully oriented graph obtained after incorporating additional temporal information to (A). Links 
without arrowheads represent associations between traits; links with arrowheads represent causal effects from the trait on the arrow tail to the 
trait on the arrowhead. GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; 
BABW = born alive average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.
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2393Causal links among swine reproductive traits

evaluate this model choice. The difference in DIC 
between a learned network presuming the selected 
direction (i.e., WEI → SuTB) versus the same net-
work with a reversed link (i.e., WEI ← SuTB) was 
smaller than 1 point (i.e., DIC values were 11974.86 
and 11974.09, respectively). Such small DIC differ-
ence suggested that there was no information avail-
able in the data to select one network over the other. 
As a result, we relied solely on qualitative informa-
tion (e.g., temporal arrangement of the traits) to in-
form directionality of this link (Fig. 3B).

SEM-Based Inference

Figure 4 shows the causal network structures 
selected for final inference on the potentially causal 
relationships between reproductive performance 
traits of (Fig. 4A) sows and (Fig. 4B) gilts. Table 2  
shows posterior summaries of the corresponding 
structural coefficients representing direct effects be-
tween traits.

For sows, BABW was found to have a direct ef-
fect on BA (i.e., BABW → BA) by which every 100-g 
increase in average BABW resulted in an estimated 
decrease in BA of about [posterior mean (95% 
HPD)]  =  0.58 (0.41, 0.77) piglets. Subsequently, 
every additional piglet BA increased the TB in a 
sow litter (i.e., BA → TB) by approximately 0.96 
(0.89, 1.02) piglets.

For gilts, BA had a direct effect on both TB 
and BABW. Specifically, every unit increase in BA 

resulted in an increase in TB of 0.89 (0.85, 0.94) 
piglets and in an estimated decrease of about 360 g 
(240, 480)  in BABW. Moreover, in gilts, BABW 
also had a direct effect on TB and on SuTB. In par-
ticular, a l00-g increase in average BABW resulted 
in an estimated decrease of 0.11 (0.05, 0.17) in TB 
and of 0.42 (0.20, 0.65) in SuTB. Finally, WEI had 
a direct effect on SuTB, whereby a 1-d increase in 
WEI resulted in an estimated increase in SuTB of 
0.16 (0.09, 0.24) piglets per litter. Additional direct 
effects yielded by the network learning process are 
presented in Table 2 but are not discussed further, as 
the 95% HPD interval for the corresponding struc-
tural coefficients overlapped with the null value zero.

For completeness of  network interpretation, we 
also report indirect effects, which under linearity 
assumptions can be computed as the product of  the 
corresponding structural coefficients, as described 
by Shipley (2002). For example, for sows, the in-
direct, BA-mediated effect of  BABW on TB (i.e., 
BABW → BA → TB) was estimated as the product 
of the corresponding direct effects, namely λTB, BA × 
λBA, BABW, the posterior density of  which had a mean 
of  −0.56 TB per 100-g increase in BABW with 95% 
HPD = (−0.74, −0.39). Indirect effects for gilts are 
presented in Table 3 and can be interpreted in a 
similar manner. For gilts, most indirect effects had 
95% HPD intervals that overlapped with zero, ex-
cept for the BABW-mediated effects of  BA on TB 
(i.e., BA → BABW → TB) and of BA on SuTB (i.e., 
BA → BABW → SuTB) (Table 3).

Figure 4. Links and posterior means of structural coefficients between reproductive performance traits in sows (A) and in gilts (B) learned using 
a mixed-models adapted inductive causation algorithm implemented with 80% highest posterior density intervals. Refer to Table 2 for further de-
tails. GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; BABW = born alive 
average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.
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Finally, Table 3 also shows total effects, re-
ported as the sum of the direct effect and all in-
direct effects connecting 2 traits, as described by 
Shipley (2002). For example, the total effect of BA 
on TB is obtained as (λTB, BABW × λBABW, BA) + λTB, BA 
and had a posterior mean of 0.94 TB per additional 
BA with 95% HPD = (0.89, 0.98).

Assessment of Network Stability

The stability of the learned network was as-
sessed using a Jackknife resampling approach 
modified to leave-one-block-out at each resampling 

iteration. Figure 5 shows results of network stability 
for (Fig. 5A) sows and (Fig. 5B) gilts at the level 
of individual links and expressed as the percent of 
resampled datasets (i.e., 97 for sows, 222 for gilts) 
for which each link was present in the learned net-
work structure.

For sows, the link between TB and BA was re-
covered in 100% of the resampled datasets, whereas 
the link between BA and BABW appeared in 92% 
of the cases. The reproductive traits GAIN, WEI, 
and SuTB remained unconnected to any other nodes 
in all cases. Notably, no link directionality was re-
covered from any of the resampled datasets. Overall, 

Table 2. Posterior means and 95% highest posterior density (HPD) intervals of structural coefficients from 
the final structural equation models selected for inference separately for sows and for gilts based on the in-
ductive causation algorithm

Sows Gilts

Structural coefficient From1 To1 Posterior mean 95% HPD interval Posterior mean 95% HPD interval
λBA, BABW, unit/100 g BABW BA −0.58 −0.77, −0.41 – –
λBABW, BA, g/unit BA BABW – – −360 −480, −240
λBABW, GAIN, g/kg GAIN BABW – – 0.03 −0.02, 0.09
λTB, BA, unit/unit BA TB 0.96 0.89, 1.02 0.89 0.85, 0.94
λTB, BABW , unit/100 g BABW TB – – −0.11 −0.17, −0.05
λWEI, BABW, day/100 g BABW WEI – – 0.25 −0.04, 0.55
λSuTB, BABW, unit/100 g BABW SuTB – – −0.42 −0.65, −0.20
λSuTB, WEI, unit/day WEI SuTB – – 0.16 0.09, 0.24

1GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; BABW = born alive 
average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.

Table 3. Posterior means and 95% highest posterior density (HPD) intervals of indirect and total causal 
effects from the final structural equation models selected for inference separately for gilts based on the in-
ductive causation algorithm

Gilts

Causal effect Formulaic expression Posterior mean 95% HPD interval
Indirect effects1

  GAIN → BABW → TB2, unit/kg λTB, BABW × λBABW, GAIN −0.004 −0.011, 0.003
  GAIN → BABW → WEI, day/kg λWEI, BABW × λBABW, GAIN 0.007 −0.008, 0.029
  GAIN → BABW → SuTB, unit/kg λSuTB, BABW × λBABW, GAIN −0.01 −0.04, 0.01
  GAIN → BABW → WEI → SuTB,  

unit/kg
λSuTB, WEI × λWEI, BABW × λBABW, GAIN 0.001 −0.001, 0.005

  BA → BABW → TB, unit/unit λTB, BABW × λBABW, BA 0.04 0.02, 0.07
  BA → BABW → SuTB, unit/unit λSuTB, BABW × λBABW, BA 0.16 0.06, 0.25
  BA → BABW →WEI→ TB, unit/unit λSuTB, WEI × λWEI, BABW × λBABW, BA −0.015 −0.036, 0.004
  BABW → WEI → SuTB, unit/100 g λSuTB, WEI × λWEI, BABW 0.41 −0.10, 0.95

Total effects3

  GAIN → SuTB, unit/kg (λSuTB, BABW × λBABW, GAIN) + (λSuTB, WEI × λWEI, BABW × λBABW, 

GAIN)
−0.01 −0.04, 0.01

  BA → TB, unit/unit (λTB, BABW × λBABW, BA) + λTB, BA 0.94 0.89, 0.98
  BA → SuTB, unit/unit (λSuTB, BABW × λBABW, BA) + (λSuTB, WEI × λWEI, BABW × λBABW, BA) 0.14 0.05, 0.24
  BABW → SuTB, unit/100 g (λSuTB, WEI × λWEI, BABW) + λSuTB, WEI 0.57 0.05, 1.15

1Indirect effects are computed as the product of the corresponding direct effects represented by structural coefficients.
2GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; BABW = born alive 

average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.
3Total effects are computed as the sum of the direct effect and all indirect effects.
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the network structure learned for sows was considered 
stable, though not so the directionality of the links.

For gilts, most links connecting reproductive 
traits showed substantial stability as their presence 

ranged from 99% to 100% of the resampled datasets 
(Fig. 5B). A  notable exception was the link con-
necting GAIN and BABW, which was present in 
only 54% of the cases. This link showed the least 

Figure 5. Stability analysis of the learned network of reproductive performance traits for sows (A) and gilts (B) using a leave-one-block-out 
Jackknife resampling approach. Values (%) indicate the percentage of resampled datasets for which each link was present in the learned network 
structure. GAIN = female weight gain during late gestation; TB = total number born in a litter; BA = number born alive in a litter; BABW = born 
alive average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the subsequent gestation.

Figure 6. Network structures learned from 5 subsets (labeled panels A–E) created from the gilt dataset by random sampling without replace-
ment, to mimic the sow dataset in size and structure. GAIN  =  female weight gain during late gestation; TB  =  total number born in a litter; 
BA = number born alive in a litter; BABW = born alive average body weight; WEI = wean-to-estrous interval; SuTB = total number born in the 
subsequent gestation.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/97/6/2385/5435775 by Kansas State U

niversity Libraries user on 26 August 2019



2396 Chitakasempornkul et al.

stability in the gilt network, as removal of a single 
block negated its presence in almost half  (101 out 
of 222) of the resampled datasets. Recall that the 
link between GAIN and BABW was deemed piv-
otal for assessing directionality of effects within 
the gilt network; specifically, this link informed an 
unshielded collider with BA (i.e., GAIN → BABW 
← BA), while negating any unshielded colliders be-
tween GAIN and other non-adjacent traits, namely 
TB, WEI, and SuTB. Similar to sows, the general 
network structure of reproductive traits in gilts was 
deemed stable, though the evidence for direction-
ality of effects was considered weak.

Relative Power Differences in Network Learning

Figure 6 shows the network structures learned 
from each of the 5 gilt data subsets that were sam-
pled to mimic the sow dataset in size and structure. 
First, we note that no unshielded colliders were de-
tected in any of the gilt data subsets; as a result, it 
was not possible to learn directionality of individual 
links from any dataset smaller than the complete 
gilt dataset. This suggests a relative sample-size-
based power differential between parity groups for 
learning directionality within the network; admit-
tedly, thought, results on directionality were weak 
for both gilts and sows. Second, the network struc-
ture learned from each of the 5 gilt data subsets 
showed a number of links ranging from 3 to 5 (Fig. 6),  
in contrast to only 2 links learned from the com-
plete sow data and 7 links learned from the com-
plete gilt dataset. The intermediate number of links 
detected from the gilt data subsets suggests non-
power-based differences in network structure, pre-
sumably of a biological basis, to partially explain 
the parity difference in links recovered. In par-
ticular, all 5 gilt data subsets consistently identified 
a specific link that was not apparent from the sow 
dataset, namely the link between WEI and SuTB.

DISCUSSION

In this study, we investigated potentially causal 
biological relationships among reproductive per-
formance traits in experimental data from high-
performing gilts and sows. To accomplish this, we 
used a network approach implemented with SEMs 
and the IC algorithm to search the structure space 
of interrelationships between reproductive traits. We 
followed recent methodological developments that 
extended networks to a mixed-model framework 
(Gianola and Sorensen, 2004; Valente et al., 2010) 
in order to accommodate the inherently hierarchical 
nature of experimental data. The analytic approach 

of hierarchical network modeling formalizes integra-
tion from a systems perspective, thus enabling more 
comprehensive insight into the complex mechanisms 
that underlie animal production.

Consistent with the distinct reproductive physi-
ology of sows and gilts (Da Silva et al., 2016; 2017), 
our results indicate disparate network connectivity 
across parity groups. Gilts showed a densely inter-
connected network between all 6 reproductive per-
formance traits considered in this study. Notably, 
direct effects connected reproductive events 
starting at first gestation (i.e., GAIN) through first 
farrowing (i.e., BABW, TB, and BA) and into the 
subsequent reproductive cycle (i.e., WEI, SuTB). By 
contrast, sows showed a sparse network depicting 
only connections within the immediate farrowing 
event (i.e., BABW, BA, and TB), but without any 
temporal connections with earlier or later stages 
of the reproductive lifecycle (i.e., GAIN, WEI, and 
SuTB were completely disconnected from the rest 
of the traits). This differential network connectivity 
between parity groups may be partially explained 
by the fact that sows are mature adults, whereas 
gilts are immature animals still growing after the 
first farrowing event and into the first lactation 
(Kraeling and Webel, 2015). As such, gilts are sub-
jected to competing requirements for growth and 
reproduction, which can be expected to impact 
subsequent reproductive performance. Indeed, the 
high level of network connectivity observed in gilts 
suggests potential propagating ripple effects across 
the physiological network and productive lifecycle. 
This is consistent with the current state of the lit-
erature, which indicates that performance of parity 
one sows (which are referred to as gilts in this study) 
is a critical contributing factor to subsequent repro-
ductive performance and ultimately, sow longevity 
in the herd (Mabry et al., 1996; Rozeboom et al., 
1996). Indeed, our results show direct effects and 
total effects connecting stages of the gilt lifecycle 
(e.g., BABW and SuTB), suggesting longer-term 
impact of early reproductive events.

In contrast, the sparser network recovered in 
sows suggests a mitigated potential for long-term 
propagation of intervention effects once females 
have reached maturity and adult size. One may 
interpret this result as an opportunity for com-
pounding long-term beneficial effects in response 
to early managerial interventions. As such, special 
attention and tailored management of gilts during 
the first farrowing and lactation seems warranted. 
Undoubtedly, modern swine females across the 
parity spectrum require continuous updating of 
nutrient requirements to maximize productive ef-
ficiency and are highly responsive to management 
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practices and technologies (Boyd et  al., 2002; 
Kraeling and Webel, 2015). This is specially the case 
for young females from modern maternal lines, as 
they seem to be particularly sensitive to finely tuned 
managerial practices because of a lower appetite 
and exceptional lean growth potential despite large 
competing nutritional demands from gestation 
(Bortolozzo et  al., 2009). This is consistent with 
current recommendations for tailored management 
of dietary nutrient density and feeding intake of 
gilts during first lactation, as this may enhance their 
long-term reproductive performance and longevity 
in the production system (Kraeling and Webel, 
2015). For example, tailored feeding strategist such 
as segregated phase feeding is often recommended 
(Kraeling and Webel, 2015) to ensure feed intake 
is matched with nutrient requirements of younger 
gilts still undergoing growth.

In addition, the influence of season and envir-
onmental conditions on reproductive performance 
of swine females is well documented (Kraeling and 
Webel, 2015). Gilts seem to be most vulnerable to 
seasonal infertility in response to extreme tempera-
ture and disruptions in photoperiod, with reported 
consequences of delayed estrus after weaning and 
disrupted estrus behavior, among others (Britt  
et al., 1983; Wettemann and Bazer, 1985; Tummaruk 
et al., 2004; Auvigne et al., 2010), as consistent with 
results from this study. This is relevant to our dis-
cussion because data collection for this study was 
conducted during summer months. Due to en-
hanced sensitivity, gilts might also be expected to 
respond to tailored modulations of the ambient en-
vironment (e.g., cooling devices, group size, equip-
ment, and facilities) and to dietary management 
of nutrient density (McGlone et  al., 1988; 2004; 
Kraeling and Webel, 2015).

As we continue to ponder connectivity of the 
reproductive network in sows and gilts, it is worth 
mentioning that all links recovered from the sow 
dataset and most of those from the gilt dataset 
were validated as inferentially stable using Jackknife 
resampling. Moreover, a power assessment acknow-
ledged a potential biological basis for differences 
in network connectivity. Admittedly, differences in 
sample size between the parity groups may underlie 
and partially explain some of the observed differ-
ences, as the gilt dataset was almost twice as large 
as the sow dataset. Yet, the power assessment re-
covered more links (i.e., ranging from 3 to 5; Fig. 6)  
in every one of the 5 gilt data subsets compared to the 
2 links recovered from the complete sow data, sug-
gesting additional non-power-related (presumably 
biological) reasons for the observed network discrep-
ancies between parity groups. Worth highlighting 

is the link connecting WEI and SuTB, both indica-
tors of reproductive performance in the subsequent 
gestation. This link was consistently recovered from 
all 5 gilt data subsets as well as from the complete 
gilt dataset, but was not apparent in sows. This may 
be partially explained by the fact that, in the post-
weaning period, gilts are typically less effective in the 
recovery of mobilized tissue and body condition score 
compared to sows, and tend to redirect energy and 
nutrients towards ensuring mature size growth over 
reproductive functions (Rempel et  al., 2015), thus 
delaying estrous and rebreeding. It is then not unex-
pected that subsequent reproductive performance of 
gilts is more sensitive to WEI than that of sows. For 
this reason, maximizing nutrient intake during lacta-
tion seems to be especially important in gilts.

The network-type SEM approach implemented 
in this study raises the issue of statistical power as 
an important point in need of serious consideration 
for proper implementation of these methods in the 
context of animal agriculture. Recall that the swine 
datasets used in this study might be considered 
substantial in size for a designed experiment (i.e., 
> 3,800 observations from 640 females). Yet, this 
experiment was arguably not designed for network 
analysis and the dataset may still not be big enough 
to have adequate power for learning network struc-
ture or assessing network differences. In particular, 
inference on directionality of links seems to be spe-
cially sensitive to power. For illustration, consider 
the sow dataset (the smallest of the 2 datasets), 
consisting of a total of 1,200 observations collected 
from 200 females (i.e., 6 traits × 200 sows), for 
which the IC algorithm failed to assign direction 
to any of the links. Further, Jackknife resampling 
failed to identify direction for any link in sows, 
such that link orientation for final inference in this 
parity group was based on relative model fit to the 
observed data. Even with the complete gilt dataset, 
which consisted of a total of 2,640 observations 
collected from 440 females (i.e., 6 traits × 440 gilts), 
directionality of links turned out to be the weakest 
of our results. Specifically, recall that directionality 
of the gilt network hinged on the link recovered be-
tween GAIN and BABW, which in turn oriented 
most other links in the network by detecting (or 
negating) the role of BABW as an unshielded col-
lider with other nodes. Yet, the link between GAIn 
and BABW was not inferentially stable, as it was 
detected in only 54% of the Jackknife resampling 
folds. Overall, it appears that even larger datasets 
with informative structures will be needed to ensure 
sufficient statistical power for network learning in 
order to reliably explore how traits affect each other 
in an integrated system.
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In pork production systems, an important as-
pect of profitability is the number of piglets pro-
duced per sow per year (Kraeling and Webel, 2015). 
To this end, swine breeding programs have empha-
sized selection for increased litter sizes (Johnson 
et al., 1999) over the past few decades. Larger litter 
sizes have been associated with lower birth weight 
(Town et al., 2004), which in turn has implications 
for pre-weaning mortality rate and further piglet 
development (Milligan et  al., 2002). This is likely 
due to compromised placental development in the 
crowded uterus (Père et  al., 1997) and associated 
competition for nutrients and space throughout ges-
tation (Geisert and Schmitt, 2002). Indeed, piglets of 
lower average birth weight are weaker and less likely 
to survive, thus posing economic and welfare con-
cerns. Our findings are conceptually consistent with 
this understanding, particularly regarding the inter-
relationships between piglet birth weight and surviv-
ability. Specifically, BABW as a node played a key 
role in both sow and gilt networks; further, the struc-
tural coefficients connecting BABW and BA showed 
negative signs and thus supported inverse relation-
ships between the traits in both parity groups.

Also, both parity groups showed a connec-
tion between litter size and piglet survivability, as 
depicted by the recovery of a link connecting BA 
and TB. Our next discussion emphasizes presence, 
rather than direction, of this link, as results on dir-
ectionality were considered weak in this study, as 
discussed earlier. Piglet mortality at birth seems to 
be a multifactorial problem, with contributing fac-
tors including litter size and parity, among others 
(Vanderhaeghe et  al., 2013). While not a formal 
comparison, we observed seemingly disparate mag-
nitudes of the association between BA and TB in 
gilts and in sows. Specifically, in sows, every unit in-
crease in BA resulted in a larger litter size by approxi-
mately 1 unit, as the 95% HPD of λTB, BA = (0.89, 1.02) 
contained the value 1.  For gilts, a piglet increase 
in BA translated into a proportionally smaller in-
crease in litter size, as the corresponding 95% HPD 
(i.e., 0.85, 0.94) was below the value 1. This could 
be partially explained by physiological differences 
in uterine capacity between the parity groups (Ford 
et al., 2002), and the resulting timing of embryonic 
mortality due to uterine overcrowding (Foxcroft 
et al., 2009). Uterine capacity is critical for the de-
velopment and survivability of the pig conceptus 
(Chen and Dziuk, 1993) due to its influence on 
placental growth and thus, supply of nutrients to 
the conceptus (Ford et al., 2002). Swine females, in 
general, but particularly gilts, typically have limited 
uterine capacity relative to their ovulation rate  

(Da Silva et  al., 2016). In gilts, this precipitates 
uterine crowding and conceptus losses in earlier 
stages of gestation (Da Silva et al., 2017). Embryos 
that die before day 30 to day 35 of gestation are 
often reabsorbed, but any fetuses that are lost after 
day 30 to day 35 are accounted for at farrowing 
either as mummies or stillborn piglets (Foxcroft 
et al., 2009). Therefore, our results can be explained 
by gilts having higher embryonic loss in the early 
gestation period (Da Silva et al., 2017), thus unob-
servable at birth; whereas sows with higher uterine 
capacity may be able to maintain fetal development 
longer into the pregnancy, thereby resulting in pro-
portionally higher losses at later stages of gestation, 
which are then observable at birth.

Identification of  parity differences in the mag-
nitude of  effects along the reproductive network 
is arguably of  interest to inform tailored manage-
ment and efficient decision making of  each cat-
egory of  animals. In this study, each parity group 
was analyzed separately such that it is not pos-
sible to conduct formal tests for parity differences 
on the structural coefficients connecting, say, BA 
and TB. Yet, separate analyses were inevitable in 
this case because of  the standard assumption of 
SEMs that structural coefficients be homogeneous 
across the population (Gianola and Sorensen, 
2004), thereby curtailing formal testing, even if  a 
joint analysis of  sows and gilts were conducted. 
Methodological developments are warranted to 
explicitly allow specification of  sources of  het-
erogeneity on structural coefficients in SEM. 
Additional methodological extensions relevant 
to SEMs in animal agriculture include heterogen-
eity of  variance parameters, as a way to stabilize 
the variance of  traits with skewed distributions, 
such as WEI in this study. Here, we considered 
a variance-stabilizing transformation on WEI, 
though this was not pursued because it is unclear 
what the implications of  doing so might be for 
simultaneous modeling of  WEI as a response and 
as a predictor, as well as for interpretation of  in-
direct and total effects given linearity assumptions 
of  SEM. The inferential implications of  SEM as-
sumptions of  normality and homogeneous vari-
ances for all traits require further study.

Specification of the network structure is critical 
to SEM. The IC algorithm is one of many strat-
egies available to conduct a data-driven search 
for network structure and directionality compat-
ible with the joint probability distribution of the 
data (Spirtes et  al., 1993). In a rather informal 
follow-up step to the IC algorithm, a researcher 
can incorporate additional information to assist 
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with remaining undirected links and thus differen-
tiate between models within an equivalence class. 
Admittedly, such incorporation of information is 
subject-matter-based and rather ad hoc in nature, 
and thus, does not guarantee causality. For ex-
ample, in this study, the direction of the link con-
necting WEI and SuTB in gilts was not resolved by 
the IC algorithm. To fully orient the gilt network, 
we incorporated temporal information and set WEI 
→ SuTB, as later events cannot have an effect on 
earlier events. Another type of information that can 
be used to assist in orienting left-over undirected 
links in the context of structured data is an indi-
cator of model fit. Here, we used DIC (Spiegelhalter 
et  al., 2002) to select between SEM specifications 
compatible with the undirected graph yielded by 
the IC algorithm for the sow dataset, as shown in 
Fig. 2B. These 3 SEM specifications correspond to 
the same equivalence class defined at the residual 
level by the mixed-models-adapted IC algorithm 
(Valente et al., 2010). In this adaptation of the IC 
algorithm, the residual-level equivalence class is 
defined after fitting random effects to account for 
correlation patterns in the data due to experimental 
design or other structural components of the data, 
such as genetic relationships (Inoue et  al., 2016). 
By contrast, recall that the DIC is an indicator of 
model fit computed based on the deviance statistic 
and as such, uses the joint likelihood of the ob-
served data (as opposed to that of residuals). That 
is, the mixed-models-adapted IC algorithm searches 
for network structure on the residual (co)variance 
matrix R* [rather than on the (co)variance matrix of 
the observed data var(y) = ZB*Z ʹ + R*, for B* = (I – 
Λ)−1B(I − Λ)−1′], thus yielding a class of equivalent 
models defined at the residual level (Valente et al., 
2010). Differences in goodness of data fit between 
otherwise residual-level equivalent models should 
then not be surprising, provided there is structure 
of distribution of random effects; in fact, DIC dif-
ferences are to be anticipated in such case. Indeed, 
discrepancies in the selection of SEM structure 
from DIC relative to the mixed-models-adapted IC 
algorithm were also reported by Inoue et al. (2016). 
Specifically for this study, data architecture proved 
useful in the implementation of DIC to differen-
tiate between competing sow networks (Fig. 2A), as 
indicated by DIC differences of 20 points or more 
between competing SEM specifications.

In using the IC algorithm, it is important to as-
sess stability of the learned network structures be-
fore proceeding further with inference. Following 
Peñagaricano et  al. (2015), we adapted Jackknife 
resampling to network learning and implemented 

the sampling strategy so as to leave-one-block-out 
at a time instead of the more traditional leave-one-
observation-out. This was intended as a trade-off  
for computational efficiency in the assessment of 
network stability. This approach is consistent with 
Dórea et  al., (2018), who used a machine-learning 
strategy to leave-one-trial-out of the dataset at a time 
when validating feed intake predictions in lactating 
dairy cows. So adapted, Jackknife resampling might 
be considered a validation strategy in a broader scope 
of inference (Bello and Renter, 2018) across the popu-
lation for which the body weight blocks used in this 
study [or trials used by Dórea et al. (2018)] might be 
considered a representative, if not random, sample.

Admittedly, in and of themselves, the statistical 
methodology that underlies SEM does not guarantee 
causal claims. As an example, we refer the reader to 
the inferential weaknesses described for this study in 
the learning of directionality of direct effects. In de-
signed experiments, the conclusion of a causal effect 
of a treatment of interest is supported by randomiza-
tion, which is considered the gold standard for causal 
inference (Bello et al., 2018). It is often overlooked, 
though, that such randomization-based causal claims 
are restricted to the effect of treatment on a response 
variable of interest; yet, randomization does not sup-
port causality of one response variable on another, 
as is of interest for the type of causal phenotypic 
networks that motivated this study. That is, even in 
designed experiments, causal relationships between 
response variables of interest may be confounded by 
other variables (either observed or unobserved) or 
even by correlations induced by the design structure 
(i.e., within-block correlations). It is for this reason 
that causal identification requires that non-trivial 
causal assumptions be made (Pearl, 2009), even in 
the context of designed experiments. Briefly, these 
assumptions comprise the Markov condition, the as-
sumption of faithfulness or stability, and causal suf-
ficiency. The latter assumption, causal sufficiency, is 
probably the most delicate one because it implies that 
any confounders in the system are known and either 
have been measured or can be controlled for by other 
measured variables. Importantly, these causal as-
sumptions are not directly testable from data and yet 
are fundamental for further inference, as explained 
by Bello et al. (2018). Despite these limitations, we 
strongly believe that the framework of causal infer-
ence offers promising practical advantages for scien-
tific progress (Bello et al., 2018). For example, insight 
gained from causal inference can help subject-matter 
scientists identify and refine research hypotheses that, 
ideally, could then be tested in tailored randomized 
experiments conducted in vivo or in vitro. From a 
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study design standpoint, causal inference can further 
help elucidate what set of variables should be meas-
ured and which others might be redundant, thereby 
enhancing efficiency in the allocation and use of re-
search funding. More broadly, causal inference un-
deniably contributes to the growing body of scientific 
evidence on which science advances.

CONCLUSION

This study provides insight into potentially 
causal biological networks of interconnected re-
productive performance traits in high-producing 
sows and gilts, based on SEMs and the IC algo-
rithm adapted to mixed models. Evidence suggests 
distinct networks for these parity groups, con-
sistent with differences in their reproductive physi-
ology, thereby substantiating tailored reproductive 
management specific for each category of animals. 
Further investigation of network connectivity, dir-
ectionality, and sources of heterogeneity is war-
ranted to improve integrated understanding and 
efficient management of swine production systems.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of 
Animal Science online. 
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