size of both corn sources tended to increase litter ADG and weaning weights.

	Conventi	onal yellow	Enogen Feed					
	den	t, μm ²	corn, µm ³			Probability, P <		
Item	600	900	600	900	SEM	Corn source × particle size	Particle size	Corn source
Number of sows, n	28	27	25	27				
Parity	1.89	1.93	1.92	1.93				
Lactation length, d	18.7	18.7	18.7	18.8	0.24	0.672	0.937	0.634
Sow body weight, kg								
Change (farrow to wean)	-14.3	-16.1	-15.6	-10.7	2.17	0.065	0.395	0.261
Pigs weaned, n	12.5	12.3	12.7	12.6	0.28	0.913	0504	0.407
Lactation ADFI, kg4	4.97	4.35	4.70	4.94	0.21	0.048	0.390	0.460
Litter ADG, g	2,786	2,563	2,911	2,706	111.8	0.937	0.061	0.238
Total litter gain, kg	44.73	40.71	46.64	43.81	1.93	0.749	0.069	0.185
¹ A total of 107 sows (Line 241; DNA, Columbus, NE) were enrolled in a 21-d trial across 4 farrowing groups.								
3Enogen, Syngenta Seeds,	LLC, Down	ers Grove, IL				00 1		

soybean meal-based gestation diet.

Table 1. Effect of corn source and particle size on lactating sow

Keywords: corn variety, lactating sows, litter growth, particle size

PSIV-16 Evaluation of Nutritional Strategies to Reduce Growth Rate of Pigs Beyond 90-kg Body Weight. Zhong-Xing Rao¹, Jordan T. Gebhardt², Mike D. Tokach³, Jason C. Woodworth³, Joel M. DeRouchey³, Robert D. Goodband⁴, ¹Kansas State University, ²Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, ³Department of Animal Sciences & Industry, College of Agriculture, Kansas State University, ⁴Department of Animal Sciences & Industry, Kansas State University

A total of 356 pigs (241×600; DNA; Columbus, NE; initially 89.0 kg) were used in a 44-d trial to evaluate nutritional strategies to reduce growth rate. Three diets [control, Lys-deficient, and corn (98% corn and 2% vitamins and minerals)] were arranged into 4 nutritional strategies. The three diets contained 0.70, 0.50, and 0.18% standardized ileal digestible (SID) Lys, respectively, with all nutrients other than amino acids above requirement estimates. From d 0 to 28, pens received one of two diets (control or Lys-deficient). On d 28, pens either remained on their previous treatment or were fed the corn diet from d 28 to 44. Pens were assigned to nutritional strategies in a randomized complete block design based on initial body weight (BW) with 18 pens/treatment from d 0 to 28 and 9 pens/treatment from d 28 to 44. From d 0 to 28, pigs fed the Lysdeficient diet had decreased (P< 0.001) ADG, G:F, and d 28 BW compared to pigs fed the control diet. From d 28 to 44, pigs fed the corn diet had decreased (P< 0.05) ADG and G:F compared to pigs fed the control or Lys-deficient diets. Pigs fed the Lys-deficient diet for 44 days had decreased (P< 0.05) ADG and G:F compared to pigs fed the control diet for 44 days. From d 0 to 44, pigs fed the Lys-deficient diet then corn diet had decreased (P< 0.05) ADG, final BW, and G:F compared to all other treatments. Pigs fed the Lys-deficient diet for 44-d and pigs fed the control diet then corn diet had decreased (P< 0.05) ADG, G:F, and final BW compared to pigs fed the control diet for 44-d. In summary, feeding strategies with lysine deficient diets allow producers to slow growth rate of finishing pigs; however, feed efficiency is also impaired.

Table 1. Effect of nutritional strategies to reduce growth rate of pigs beyond 90-kg body weight1							
d 0 to 28	Cont	rol ²	Lys-de				
d 28 to 44	Control	Corn	Lys-deficient	Corn	SEM		
d 0 to 28							
ADG, kg	0.8	34 ^a	0.71	0.013			
ADFI, kg	2.	77	2.78	0.028			
G:F	0.3	01 ^a	0.254	0.0083			
d 28 to 44							
ADG, kg	0.86 ^a	0.48°	0.71 ^b	0.44 ^c	0.032		
ADFI, kg	2.60^{a}	2.42 ^{ab}	2.46^{ab}	2.26 ^b	0.058		
G:F	0.331 ^a	0.197 ^b	0.289 ^a	0.195 ^b	$\leq 0.0150^{3}$		
d 0 to 44 (overall)							
ADG, kg	0.86 ^a	0.71 ^b	0.72 ^b	0.61°	0.018		
ADFI, kg	2.72	2.66	2.69	2.61	0.039		
G:F	0.315 ^a	0.268 ^b	0.267 ^b	0.235°	0.0042		
about $M = 0.05$							

'BW = body weight. ADG = average daily gain. ADFI = average daily feed intake. G:F = feed efficiency 'SID lysine (%) was 0.70 for the control diet, 0.50 for the Lys-deficient diet, and 0.18 for the corn diet. 'Heterogenous residual variance.

Keywords:	growth	rate.	late-	finis	hing	pigs,	lysine
,						P	- /

PSIV-9 A Multistate Evaluation of an Additional Iron Injection Administered to Piglets Before Weaning. Tyler B. Chevalier¹, Olayiwola Adeola², Scott D. Carter³, C. Robert Dove⁴, Mark J. Estienne⁵, Crystal L. Levesque⁶, Charles V. Maxwell⁷, Tsung Cheng Cheng. Tsai⁷, Merlin D. Lindemann¹, ¹University of Kentucky, ²Purdue University, ³Oklahoma State University, ⁴The University of Georgia, ⁵Virginia Polytechnic Institute and State University, ⁶South Dakota State University, ⁷University of Arkansas

A cooperative study utilizing 514 weanling pigs from 7 experiment stations was conducted to determine the effects of an additional iron injection administered to piglets before weaning on growth performance and hematological measures. All pigs received an initial iron injection at the time of processing postfarrowing. At each station, pigs were assigned to either the control or an added-injection treatment by pairing two samesex pigs with a BW difference ≤ 0.453 kg within a litter. One pig within each pair received the additional iron injection (same dose received at processing) 3 to 5 days preweaning. Once weaned, both the control and addedinjection group received common station-specific nursery diets. Body weight was recorded weekly by all stations. Blood samples were also collected at second injection, weaning, 14 and 28 days postweaning by 3 of the 7 stations. All data were subjected to ANOVA with the model containing the terms treatment, station, and treatment by station interaction. Average daily gain (Table 1) was greater for the added-injection group during d 0 to 14 (212.5 vs. 202.6 g, P = 0.03) which resulted in an increase in d 14 BW (P = 0.05). Although there was no treatment effect for overall ADG (d -4 to d 28), the tendency for a treatment by station interaction (P = 0.09) illustrated both responsive and nonresponsive stations, indicating that iron status was not the most limiting factor for growth at all stations. Hemoglobin concentration was greater (P < 0.0001) for the added-injection group at weaning and d 14 postweaning. In conclusion, an additional iron injection administered before weaning may lead to early success in the nursery resulting in a heavier BW in subsequent periods; however, the beneficial effects of an additional iron injection are likely dependent on herd status and characteristics.