MANAGERIAL TOOLS AND TIPS IN AN UNCERTAIN CLIMATE AND MARKET

Brought to you by:

K-State Beef Extension Team
K-STATE BEEF EXTENSION SPECIALISTS

Dr. Dale Blasi
- Stocker mgmt./nutrition
- dblasi@k-state.edu

Dr. Jaymelynn Farney
- Nutrition/forage systems
- jkj@k-state.edu

Dr. Sandy Johnson
- Repro. physiology/mgmt.
- sandyj@k-state.edu

Dr. AJ Tarpoff
- Animal health/wellbeing
- tarpoff@ksu.edu

Dr. Justin Waggoner
- Nutrition/beef sys. mgmt.
- jwaggon@k-state.edu

Dr. Bob Weaber
- Genetics/cow-calf mgmt.
- bweaber@k-state.edu
MANAGERIAL TOOLS AND TIPS IN AN UNCERTAIN CLIMATE AND MARKET

• Current Weather Situation and Forecast
 • Mary Knapp, Kansas State Climatologist

• Preparing for Heat Stress Events
 • Dr. AJ Tarpoff, Asst. Professor, Dept. of Animal Sciences & Industry

• Use of BeefBasis.com for Making Calf Management and Market Decisions
 • Dr. Dale Blasi, Professor, Dept. of Animal Sciences and Industry
 • Dr. Glynn Tonsor, Professor, Dept. of Agricultural Economics

Please use the Question and Answer window in Zoom to post questions to our panelists.
WEATHER
PREVIOUS CONDITIONS AND
OUTLOOKS

Mary Knapp
Kansas State Climatologist
May Precipitation

Monthly Precipitation Summary
May 1 - May 31, 2020

Produced by Weather Data Library
Department of Agronomy
Kansas State University
DEPARTURE FROM NORMAL

Departure from Normal Monthly Precipitation
May 1 - May 31, 2020

Produced by Weather Data Library
Department of Agronomy
Kansas State University
CURRENT DROUGHT STATUS

U.S. Drought Monitor
Kansas

June 2, 2020
(Released Thursday, Jun. 4, 2020)
Valid 8 a.m. EDT

Drought Conditions (Percent Area)

<table>
<thead>
<tr>
<th></th>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>10.84</td>
<td>22.70</td>
<td>15.83</td>
<td>9.03</td>
<td>2.60</td>
</tr>
<tr>
<td>Last Week (05/21/20)</td>
<td>10.84</td>
<td>22.70</td>
<td>15.83</td>
<td>9.15</td>
<td>2.40</td>
</tr>
<tr>
<td>5 Months Ago (03/06/20)</td>
<td>85.54</td>
<td>8.43</td>
<td>4.01</td>
<td>2.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Start of Calendar Year (1/1/2020)</td>
<td>77.13</td>
<td>22.93</td>
<td>5.07</td>
<td>4.22</td>
<td>0.00</td>
</tr>
<tr>
<td>Start of Water Year (10/1/2019)</td>
<td>81.26</td>
<td>13.92</td>
<td>5.71</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>One Year Ago (10/1/2018)</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Intensity:
- None
- D0 Abnormally Dry
- D1 Moderate Drought
- D2 Severe Drought
- D3 Extreme Drought
- D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

droughtmonitor.unl.edu

Author:
Curtis Riganti
National Drought Mitigation Center

USDA
NDMC
NWS
NOAA
K-State Beef

KStateBeef.org
7 DAY PRECIPITATION OUTLOOK
6-10 DAY OUTLOOK
6-10 Day Outlook

6-10 Day Outlook
Temperature Probability
Made 3 Jun 2020
Valid Jun 09 - 13, 2020

Dashed black lines are climatology (deg F). Shaded areas are FCST values above 78° or below 54°. Normal is 58°. Gray areas are near-normal.

Probability of Below
90% 80% 70% 60% 50% 40% 33% 33% 40% 50% 60% 70% 80% 90%
Normal
Probability of Above

Probability of Below
90% 80% 70% 60% 50% 40% 33% 33% 40% 50% 60% 70% 80% 90%
Normal
Probability of Above
SUMMER OUTLOOK

THREE-MONTH OUTLOOK
PRECIPITATION PROBABILITY
0.5 MONTH LEAD
VALID JJA 2020
MADE 21 MAY 2020

EC MEANS EQUAL
CHANCES FOR A, N, B
A MEANS ABOVE
N MEANS NORMAL
B MEANS BELOW

Probability of Below
33% 40% 50% 60% 70% 89% 90% 100%
Probability of Near-Normal
33% 40% 56% 64% 70% 80% 95% 100%
Probability of Above
33% 40% 50% 56% 70% 80% 90% 100%
TOOLS

• Animal Comfort Index
 • http://mesonet.k-state.edu/agriculture/animal/

• GrassCast
 • https://grasscast.unl.edu/
ANIMAL COMFORT INDEX

Kansas Mesonet - Comfort Index at 2020-06-32 14:32 (CST)
ANIMAL COMFORT INDEX

Garden City 7 Day Animal Comfort

- Comfort Index
- Air Temp

- Cold Stress
- None
- Heat Stress
GRASS-CAST
GRASS-CAST
GRASS-Cast

Percent Change in 2020 Predicted ANPP compared to 1982-2019 mean ANPP Assuming Below Normal Precipitation from May 26 to August 31

Forecast made: May 26, 2020
Links

- Weather Outlooks
 - https://www.cpc.ncep.noaa.gov/
- Kansas Mesonet
 - http://mesonet.k-state.edu/ (main page)
 - http://mesonet.k-state.edu/agriculture/animal/ (comfort index)
- Grass-Cast
 - https://grasscast.unl.edu/
CONTACT INFORMATION

• Mary Knapp
• Weather Data Library/Kansas Mesonet
• 2004 Throckmorton Hall
 • Email: Mknapp@ksu.edu
 • Office: 785-532-7019
 • Cell: 785-313-1562
PREPARING FOR HEAT STRESS EVENTS

A.J. Tarpooff
Beef Extension Veterinarian
Kansas State University
Animal Sciences and Industry
Heat Stress Impact on Cattle

- ~$369 Million/year in losses to the Beef Industry (St. Pierre et al 2003 study)
- Decrease Intake
- Increase Maintenance
- Potential for Mortality
- Decreased Fertility

Effective Temperature

Effective of temperature on rate of feed intake, maintenance energy requirement, and gain.
Source: Ames (1985)
Preparing for Heat Stress Events

- Monitoring Tools
 - THI Index
 - Heat Stress Outlook
 - Kansas Mesonet

- Building and Implementing a Plan
Temperature Humidity Index

- Snapshot in time
- Temperature/Humidity easily acquired from local weather forecast
- Charts found in the National BQA Manual

Beef Cattle Temperature Humidity Index

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>Normal <75</th>
<th>Alert 75-78</th>
<th>Danger 79-83</th>
<th>Emergency >84</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>84 85 86 87 88 90 91 92 93 94 95 96 97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>83 84 85 86 87 88 89 90 91 92 93 94 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>81 82 83 84 85 86 87 88 89 90 91 92 93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>80 81 82 83 84 85 86 87 88 89 90 91 92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>79 80 81 82 83 84 85 86 87 88 89 90 91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>78 79 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>76 77 78 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>75 76 77 78 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>74 75 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>73 73 74 75 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>72 72 73 73 74 75 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>70 71 71 72 73 73 74 74 75 75 76 76 77 78 79 79 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>69 70 70 71 71 71 72 72 73 73 74 74 75 75 76 76 77 77 78 78 78 79 79 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://beef.unl.edu/handling-cattle-through-heat/humidity-indexes
WHAT ABOUT OTHER FACTORS?

• Temperature
• Humidity
• Wind speed
• Solar radiation (cloud cover)
• Cumulative Heat Load
 • Night time cooling
USMARC FORECASTING TOOL

Kansas Mesonet Animal Comfort Index

- https://mesonet.k-state.edu/agriculture/animal/
- 65 local observations
- Gives updated readings every hour
Animal Comfort Index

- **Values for Heat and Cold Stress**
- **Numerical Values different than THI**

Heat and Cold Stress Level Categories for the Cattle Comfort Advisor:

<table>
<thead>
<tr>
<th>Comfort Level</th>
<th>Map Indicator</th>
<th>Index Value, °F</th>
<th>General Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Danger</td>
<td>Red</td>
<td>> 105</td>
<td>Animal deaths may exceed 5%</td>
</tr>
<tr>
<td>Heat Caution</td>
<td>Orange</td>
<td>95 to 105</td>
<td>Decreased production, 20% or more Reduced conception, as low as 0%</td>
</tr>
<tr>
<td>Heat Caution</td>
<td>Yellow</td>
<td>85 to 95</td>
<td>Decreased production, 20% or more Reduced conception, as low as 0%</td>
</tr>
<tr>
<td>Comfortable</td>
<td>Green</td>
<td>77 to 85</td>
<td></td>
</tr>
<tr>
<td>Comfortable</td>
<td>Light Green</td>
<td>32 to 77</td>
<td></td>
</tr>
<tr>
<td>Comfortable</td>
<td>Light Blue</td>
<td>15 to 32</td>
<td></td>
</tr>
<tr>
<td>Cold Caution</td>
<td>Dark Blue</td>
<td>< 15 to -20</td>
<td>18 to 36% increase in dry matter intake</td>
</tr>
<tr>
<td>Cold Danger</td>
<td>Dark Purple</td>
<td>< -20 to -40</td>
<td></td>
</tr>
<tr>
<td>Cold Danger</td>
<td>Purple</td>
<td>< -40</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from: https://www.mesonet.org/images/site/Using%20the%20Mesonet%20Cattle%20Comfort%20Advisor(1).pdf
Kansas Mesonet Animal Comfort Index

- 7 Day Animal Comfort
- Able to monitor night time cooling time
FORECASTING HAS LIMITATIONS

• Individuals can be affected differently
• BCS
• Hair coat (winter/summer)
• Hair color
• Previous health insults (BRD)
How do cattle dissipate heat?

- Cattle much less efficient than other species
- Evaporative cooling
 - Respiratory
 - Sweating (only sweat 10% of what people do)
 - Breed and color variation
- Cattle internal temp peaks 2 hours after environmental peak
- Takes at least 6 hours to dissipate the heat load
 - Accumulative heat load
 - Multiple days of heat stress
 - Not able to dissipate the heat load over night
FORMULATING A PLAN

• Develop a protocol
• Educate the crew
• Implement when Forecast Tools dictate
 • 2 consecutive days of emergency daytime heat indexes or,
 • No nighttime cooling for 2 days
MANAGEMENT CONSIDERATIONS

• Cattle Handling
 • Never process, handle, or load during heat of day
 • Finish up by 10:00am

• Feeding
 • Rumen is a massive heat vat!
 • 70% of daily feed offering delivered as late in the afternoon as possible
 • Reduces feeding activity during peak thermal period
 • Allows max heat of digestion to occur overnight
 • Occurs 4-6 hours after feeding
RATION COMPOSITION AND HEAT PRODUCTION

High:
- High fiber roughages
- Low quality hay or straw

Mod:
- Grains/highly digestible roughages
- Silage

Low:
- Fats
- Oils
OTHER MANAGEMENT CONSIDERATIONS

• Reduce pen stocking density
 • Split fat pens if space available
 • Double trough space for water availability
 • Reduces crowding
 • Reduces bedding pack heat load
 • Less animal heat over same area

• Due to current market conditions, this may not be possible
Pen Environment
SPRINKLERS

• Can be useful if used correctly
• Wet the animal and pen/Don’t mist
 • Droplet size matters (150 micron diameter)
• Very early in morning or overnight
 • Helps with overnight cooling before peak heat load
 • Cools pen floor
• Not for use in the middle of the day
 • Increases humidity in the pen microenvironment
Bedding??

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Avg. Face Temp (°F)</th>
<th>Ambient Temp (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare Floor</td>
<td>137</td>
<td>97</td>
</tr>
<tr>
<td>6” Manure</td>
<td>137</td>
<td>97</td>
</tr>
<tr>
<td>6” Straw</td>
<td>112</td>
<td>97</td>
</tr>
</tbody>
</table>
Water Consumption

• Rules of Thumb (not exact calculations)
 • 3x DMI in Fall, Winter, Spring
 • 5x DMI in Summer

• Perspective:
 • 2x greater water consumption at 90°F compared to 70°F
WATER AVAILABILITY

• Trough space
 • 2-3in of linear trough space per head during heat stress

• Volume
 • Many waterers have summer and winter capacity levels

• Water supply lines
 • Pressure and flow capacity
 • Proper refill time to trough
 • Some suggestions say 1.1% body weight of the cattle per hour
 • Or 1.5 gal/hr for a 1000lb animal
Questions?
USE OF BEEF BASIS.COM FOR MAKING CALF MANAGEMENT AND MARKET DECISIONS

Dr. Dale Blasi, Professor, Dept. of Animal Sciences and Industry

Dr. Glynn Tonsor, Professor, Dept. of Agricultural Economics

Kansas State University
Map released: May 28, 2020
Data valid: May 26, 2020
MARKET VOLATILITY: BE PREPARED

• Existing Pasture conditions?
 • Your “typical” weaning date

• Forage inventory on hand
 • Herd size – some added flexibility

• Early weaning – pre-weaning immunization measures

• Existing facilities/equipment/labor
Analytics

BeefBasis.com offers a range of decision-support tools designed to improve your marketing decisions.

Our Analytics Tools

- Price Forecasting
- BasisMap 8-Week
- BasisMap 16-Week
- BasisMap 24-Week
- Hedge Analysis
- Ration Calculator
- Value of Gain
By-Product Feed Price Listing

April 30, 2020

<table>
<thead>
<tr>
<th>Company Name & Address</th>
<th>Feed</th>
<th>Price/ton</th>
<th>Price Quote Notes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ADM</td>
<td>Wheat midds</td>
<td>$140.00</td>
<td>4/30/2020</td>
<td>FOB Arkansas City KS</td>
</tr>
<tr>
<td>540 South Street, Lincoln, NE 68501</td>
<td>Wheat midds</td>
<td>$170.00</td>
<td>FOB Lincoln</td>
<td></td>
</tr>
<tr>
<td>Tom KC/Ark City/Minneapolis-Lloyd</td>
<td>Wheat midds</td>
<td>$145.00</td>
<td>FOB Minneapolis MN All quotes bulk $140-150</td>
<td></td>
</tr>
<tr>
<td>Lincoln</td>
<td>Wheat midds, pelleted</td>
<td>$155.00</td>
<td>FOB Arkansas City KS (limited supply)</td>
<td></td>
</tr>
<tr>
<td>Tom/Levi 865-268-5196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 CyberAg Feed Co., Inc.</td>
<td>Cottonseed hulls, sacked</td>
<td>$245.00</td>
<td>4/2/2020</td>
<td>FOB Jonestown MS (45s) ($220 Apr-Sep)</td>
</tr>
<tr>
<td>Box 12707</td>
<td>Cottonseed Pellets</td>
<td>$150.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Kansas City, MO 64116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ann Shippee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-800-892-5859 ann.cyberag@gmail.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Diversified Ingredients</td>
<td>Alfalfa pellets</td>
<td>$225.00</td>
<td>1/16/2020</td>
<td>FOB St Louis MO</td>
</tr>
<tr>
<td>143 W. Clinton Place, St. Louis, MO 63122</td>
<td>Cereal Tailings</td>
<td>call</td>
<td>FOB Perryville MO</td>
<td></td>
</tr>
<tr>
<td>Greg McArthur</td>
<td>Rice Bran</td>
<td>call</td>
<td>FOB St Louis MO (BAGGED Call)</td>
<td></td>
</tr>
<tr>
<td>636.200.9024/Cell 314-650.9772</td>
<td>Rice Hulls</td>
<td>$65.00</td>
<td>FOB St Louis MO</td>
<td></td>
</tr>
<tr>
<td>d36.200.9099 gmcarthur@diversifiedingredients.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Livestock Nutrition Center - LNC</td>
<td>DDG Pellets</td>
<td>$258.00</td>
<td>4/30/2020</td>
<td>FOB KC MO, only spot available</td>
</tr>
</tbody>
</table>
This tool helps producers evaluate the relative costs of two different feedstuffs. Additional information is available on iGrow.

<table>
<thead>
<tr>
<th>Feedstuff #1</th>
<th>Feedstuff #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset</td>
<td>Distillers Grain, Corn, Wet</td>
</tr>
<tr>
<td>Cost of Feed</td>
<td>80 $ / Unit</td>
</tr>
<tr>
<td>Size of Unit</td>
<td>2000 lbs</td>
</tr>
<tr>
<td>Trucking Cost per Mile</td>
<td>4 $</td>
</tr>
<tr>
<td>Number of Miles</td>
<td>300 miles</td>
</tr>
<tr>
<td>Tons per Load</td>
<td>25 tons</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>36 %</td>
</tr>
</tbody>
</table>
Feed Cost Results

<table>
<thead>
<tr>
<th></th>
<th>Distillers Grain, Corn, Wet</th>
<th>Wheat Middlings</th>
<th>Max Price for Wheat Middlings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Cost per Ton (As Fed)</td>
<td>$80.00</td>
<td>$160.00</td>
<td></td>
</tr>
<tr>
<td>Shipping Cost per Load</td>
<td>$1,200.00</td>
<td>$680.00</td>
<td></td>
</tr>
<tr>
<td>Shipping Cost per Ton</td>
<td>$48.00</td>
<td>$27.20</td>
<td></td>
</tr>
<tr>
<td>Total Cost per Ton As Fed Delivered</td>
<td>$128.00</td>
<td>$187.20</td>
<td></td>
</tr>
<tr>
<td>Delivered Cost per Ton DM</td>
<td>$355.56</td>
<td>$210.34</td>
<td></td>
</tr>
<tr>
<td>Delivered Cost of Crude Protein ($/ton)</td>
<td>$1,226.05</td>
<td>$1,168.54</td>
<td>$169.21</td>
</tr>
<tr>
<td>Delivered Cost of TDN ($/ton)</td>
<td>$352.04</td>
<td>$262.92</td>
<td>$223.45</td>
</tr>
<tr>
<td>Delivered Cost of NE m ($/Mcal/ton)</td>
<td>$309.18</td>
<td>$244.58</td>
<td>$209.45</td>
</tr>
<tr>
<td>Delivered Cost of NE g ($/Mcal/ton)</td>
<td>$461.76</td>
<td>$375.60</td>
<td>$202.94</td>
</tr>
<tr>
<td>Delivered Cost of NE I ($/Mcal/ton)</td>
<td>$329.22</td>
<td>$253.42</td>
<td>$215.99</td>
</tr>
</tbody>
</table>

The highlighted cell is the better buy for that ingredient.

https://www.igrowlivestocktools.org/#!/calculators/feed-cost
Feedyard Summary Sheet

Covid-19 Examples
- Feeding Period: 7/1/20
- Average Weight: 425 lbs
- Wt. @ 50% Choice: 1175
- Hair Coat: summer coat
- Current Condition Score: 9
- Gender: steer

Ration
- Feed Formulation:
 - alfalfa-straw b: 28.4%
 - bluegreen-dorman: 20.2%
 - alfalfa: 15.1%
 - corn silage: 37.8%
 - mineral: 0.8%
 - water: 0%

Ration Summary
- Feed:
 - DM: 14%
 - DMI (lb): 11.4
 - Est. DMI (lb): 11.5
 - NE-C (kcal): 2.2
 - NE-M (kcal): 2.0
 - Calcium (lb): 0.2
 - DMI (kg): 3.9
 - Energy (kcal): 5.8
 - Protein (g/kg DM): 1.5
 - Energy (kcal/kg DM): 3.0
 - Protein (g/kg DM): 1.5

Storage Shrink
- 1.0%
- Delivered: 18.1 lbs

Bunk Loss
- Consumed: 18.1 lbs

Percent of Requirement Met
- Calcium: 108%
- Phosphorus: 140%
- Magnesium: 188%
- Potassium: 178%
- Sulfur: 151%
- Chlorine: 162%
- Iron: 23.5%
- Zinc: 91.1%
- Copper: 59.7%
- Manganese: 168.8%
- Cobalt: 52.4%

MGA
- R. D. E.: 2.6
- P. E.: 1.5
- E. E.: 1.0
- S. E.: 1.0

Notes
-些项说明等

Marketing timeline for variable wean date

<table>
<thead>
<tr>
<th>Birth Date</th>
<th>Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 lb birth wt</td>
<td>@ 2.0 lbs/day of age (DOA)</td>
</tr>
</tbody>
</table>

Weaning Date Options

<table>
<thead>
<tr>
<th>Feb 2</th>
<th>June 4</th>
<th>July 1</th>
<th>July 31</th>
<th>Aug 30</th>
<th>Sept 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 DOA</td>
<td>150 DOA</td>
<td>150 DOA</td>
<td>150 DOA</td>
<td>150 DOA</td>
<td>150 DOA</td>
</tr>
<tr>
<td>ADG/DOA = 2.3</td>
<td>ADG/DOA = 2.2</td>
<td>ADG/DOA = 2.0</td>
<td>ADG/DOA = 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>425 lbs</td>
<td>485 lbs</td>
<td>545 lbs</td>
<td>605 lbs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

@ 20 lb birth wt
CONCLUSION(S)

• Regardless of the environmental conditions, a producer should always monitor
 • Pasture status
 • Available harvested forages
 • Market

• Use Beefbasis regularly to establish your trigger points
 • If large enough to make sufficient lot sizes, stringently sort by size and sell
 • E.g. sell largest one-half of calf crop at end of July and remaining ½ month later.
THANK YOU!

QUESTIONS?

Please use the Question and Answer window in Zoom to post questions to our panelists.
K-State Beef Extension Specialists

Dr. Dale Blasi
- Stocker mgmt./nutrition
- dblasi@k-state.edu

Dr. Jaymelynn Farney
- Nutrition/forage systems
- jkj@k-state.edu

Dr. Sandy Johnson
- Repro. physiology/mgmt.
- sandyj@k-state.edu

Dr. AJ Tarpoff
- Animal health/wellbeing
- tarpoff@ksu.edu

Dr. Justin Waggoner
- Nutrition/beef sys. mgmt.
- jwaggon@k-state.edu

Dr. Bob Weaber
- Genetics/cow-calf mgmt.
- bweaber@k-state.edu