Effects of Round Bale Feeding Methods on Hay Waste and Animal Performance

November 6, 2012
Eastern KS. ASI Agent Update
Austin Sexten, PT. Co. ANR Agent
Background

• Harvested feed is the largest cost contributor to maintaining a profitable beef cattle herd (Miller et al., 2001)

• Large round bales are the most common form of packaging harvested hay (Belyea et al. 1985)
Background

• Concerns
 – Hay waste

– Costs
 • Hay
 • Equipment
 • Labor/time
Objectives

• Evaluate popular types of hay feeding methods and their effects on hay waste and cow performance

• Determine how different feeder types effect hay waste and feeding behavior of animals

• Discuss alternative methods of feeding hay to reduce waste
Popular hay feeding methods

• Ground unrolling
 – Fast
 – All animals can access feed at once
 – “Bed and Breakfast”
Popular hay feeding methods

• PTO-Driven Bale Processor
 – Decreases particle length
 • Increased digestibility?
 • Increased K_p
 • Difficult to eat
 – Reduced feeding time

 – Cost: $8,000-15,000
Popular hay feeding methods

• Bale Feeder
 – Many types
 – Affordable
 • $150-1000
 – Can put out many days worth of feed
 – No trampling
Effect of hay feeding methods on cow performance, hay waste, and wintering cost

• Materials and methods
 – 360 crossbred cows
 • 610 kg
 – Three year study
 • Alfalfa mix
 • Oat hay
 – 4 replicates /method
 • 2.02 ha dry lot
 • 59 d

Landbolm, et al., 2007
Effect of hay feeding methods on cow performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Roll out on ground</th>
<th>PTO processor</th>
<th>Tapered cone feeder</th>
<th>SE</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW gain, kg</td>
<td>22.5<sub>a</sub></td>
<td>29.9<sub>b</sub></td>
<td>36.1<sub>b</sub></td>
<td>2.72</td>
<td>< 0.01</td>
</tr>
<tr>
<td>ADG, kg</td>
<td>0.381<sub>a</sub></td>
<td>0.507<sub>b</sub></td>
<td>0.611<sub>b</sub></td>
<td>0.046</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Hay/cow, kg</td>
<td>815<sub>a</sub></td>
<td>799<sub>b</sub></td>
<td>692<sub>c</sub></td>
<td>14.21</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

^{a-c}Values with unlike superscripts differ significantly ($P< 0.05$)

^dValues are hay /cow, kg from year 1

Landbolm, et al., 2007
Quantitative analysis of feeding area waste for each feeding method

<table>
<thead>
<tr>
<th>Item</th>
<th>Roll out on ground</th>
<th>PTO processor</th>
<th>Tapered cone feeder</th>
<th>SE</th>
<th>Yr</th>
<th>Trt</th>
<th>Yr × Trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa mix, kg</td>
<td>61.5</td>
<td>52.5</td>
<td>12.1</td>
<td>9.72</td>
<td>0.09</td>
<td>0.30</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Oat hay, kg</td>
<td>48.4</td>
<td>28.1</td>
<td>90.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Landbolm, et al., 2007
Three-year economic analysis comparing hay feeding methods for a 100 head cow herd

<table>
<thead>
<tr>
<th>Feeding method</th>
<th>Roll out on ground</th>
<th>PTO processor</th>
<th>Tapered cone feeder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Hay cost/ cow, $</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.58</td>
<td>103.11</td>
<td>89.45</td>
</tr>
<tr>
<td>Hay cost/ cow, $</td>
<td>10.44</td>
<td>23.90</td>
<td>10.81</td>
</tr>
<tr>
<td>Total cost per cow, $</td>
<td>109.02</td>
<td>127.01</td>
<td>100.26</td>
</tr>
</tbody>
</table>

Landbolm, et al., 2007
Implications

• Tapered cone bale feeder was superior winter hay feeding method
 – Reduced waste
 – Decreased amount of hay per cow
 – Decreased wintering cost per cow
What are the effects of different feeder types?

• Does design effect hay waste?

• Does design effect DMI?

• Does design effect cow behavior?
Large round bale feeder design affects hay utilization and beef cow behavior

Materials and methods

- 4 Feeder types
 - Dry, pregnant beef cows (n=160)
 - 631 ± 78 kg
- 8 pens
 - 2 replicates for each feeder type

Buskirk, et al., 2003
Large round bale feeder design affects on hay utilization

<table>
<thead>
<tr>
<th>Item</th>
<th>Feeder Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cone</td>
</tr>
<tr>
<td>Daily hay disappearance, kg/cow<sup>a</sup></td>
<td>12.0<sup>x</sup></td>
</tr>
<tr>
<td>Daily hay waste, kg/cow</td>
<td>0.4<sup>x</sup></td>
</tr>
<tr>
<td>Hay waste, %<sup>b</sup></td>
<td>3.5<sup>x</sup></td>
</tr>
<tr>
<td>Daily hay intake, kg/cow<sup>c</sup></td>
<td>11.5</td>
</tr>
<tr>
<td>Intake/cow BW, %</td>
<td>1.8</td>
</tr>
</tbody>
</table>

^aHay fed less residual hay at the end of the period.

^bHay waste as a percentage of hay disappearance.

^cHay disappearance less hay waste.

^{x,y,z}Within a row, least squares means without a common superscript letter differ (P < 0.05).

Buskirk, et al., 2003
Effect of feeder type on feeding behavior and dry matter waste

<table>
<thead>
<tr>
<th>Item</th>
<th>Cone</th>
<th>Ring</th>
<th>Trailer</th>
<th>Cradle</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonistic interactions/h</td>
<td>10.9^x</td>
<td>7.4^x</td>
<td>13.6^x</td>
<td>30.7^y</td>
<td>3.2</td>
</tr>
<tr>
<td>Frequency of entrances, No./h</td>
<td>6.3^x</td>
<td>8.0^x</td>
<td>8.3^x</td>
<td>29.8^y</td>
<td>3.3</td>
</tr>
<tr>
<td>Daily DM waste, kga</td>
<td>9.5^x</td>
<td>14.5^x</td>
<td>26.6^y</td>
<td>50.0^z</td>
<td>2.8</td>
</tr>
</tbody>
</table>

aDaily DM waste during simultaneous behavior data collection.

xyzWithin a row, least squares means without a common superscript letter differ ($P < 0.05$).

Buskirk, et al., 2003
Implications

• Feed losses significantly influenced by feeder type
 – Cone = Ring < Trailer < Cradle

• Feeder design affected the animal behavior
Effects of Bale Feeder Type on Hay Waste, Intake, and Performance of Beef Cattle

Materials and Methods

Feeder Treatments

• Modified Cone (MODC)

• $525.00
• 136.2 kg
• 54.6 cm apron
• 9 feeding stations
Materials and Methods
Feeder Treatments

- Open bottom steel ring (OBSR)
- $100.00
- 45.4 kg
- Open bottom
- 6 Feeding stations
Materials and Methods

Feeder Treatments

- Polyethylene Pipe (POLY)
- $209.00
- 45.4 kg
- Open bottom
- 6 Feeding stations
Materials and Methods
Feeder Treatments

• Sheeted bottom steel ring (RING)

• $300.00
• 100.8 kg
• 55.9 cm solid apron
• 16 feeding stations
Results
Effect of Feeder Design on Waste and DMI

Hay Waste

<table>
<thead>
<tr>
<th>Item</th>
<th>MODC</th>
<th>OBSR</th>
<th>POLY</th>
<th>RING</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total waste, kg</td>
<td>32.31a</td>
<td>128.5b</td>
<td>133.59b</td>
<td>77.01c</td>
<td>9.95</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Orts weight, kg</td>
<td>102.9a</td>
<td>36.53b</td>
<td>29.95b</td>
<td>45.07b</td>
<td>10.79</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Waste, % bale wt</td>
<td>5.31a</td>
<td>20.54b</td>
<td>21.04b</td>
<td>12.6c</td>
<td>1.62</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

*a,b,c*Means within a row with uncommon superscript differ (P <0.05)

Dry Matter intake

<table>
<thead>
<tr>
<th>Item</th>
<th>MODC</th>
<th>OBSR</th>
<th>POLY</th>
<th>RING</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI, kg/hd/d</td>
<td>8.37</td>
<td>8.19</td>
<td>8.43</td>
<td>8.75</td>
<td>0.24</td>
<td>0.12</td>
</tr>
<tr>
<td>DMI, % BW</td>
<td>1.70</td>
<td>1.67</td>
<td>1.72</td>
<td>1.78</td>
<td>0.05</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Implications

- MODC was most efficient design
 - Less waste = longer feeding period = less hay used annually
- Sheeted bottom results in less waste
- Feeder design didn’t affect DMI
Ad libitum access to feeders?

- Feeding losses
 - 12-25%
 - (Belyea et al. 1985)
- Feeding to meet cow requirements
 - Decrease
 - Cost
 - Hay waste
 - Overconsumption
 - Manure production

- How?
Ad libitum access to feeders?

<table>
<thead>
<tr>
<th>Item</th>
<th>Access Time, h</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>DMI, lb</td>
<td>21.2</td>
<td>24.4</td>
</tr>
<tr>
<td>Hay waste, lb*</td>
<td>0.8</td>
<td>4.2</td>
</tr>
<tr>
<td>BW change, lb</td>
<td>27.3</td>
<td>36.5</td>
</tr>
</tbody>
</table>

*Expressed as a % of DMI
Adapted from Jaderburg et al., 2011
Implications

• Limiting access time results in:
 – Acceptable performance
 – Decreased DMI
 – Decreased hay waste
 – Decreased overall costs due to:
 • Less hay needed
 • Less labor needed
Concluding Remarks

• Round bale feeding method effects
 – Hay waste
 – DMI
 – Cow behavior
 – Cow performance
 – Overall feeding cost

• Feeding method is ranch specific
Concluding Remarks

• Sheeting height matters
 – Calves vs. Cows

• Consider commercial name vs. visual appraisal of feeder

• Other feeding options
 – Bale grazing
 – Hot wire bunks
Questions?