Surveillance is the routine collection of information used to characterize risk with clearly established intervention points used to monitor and maintain animal health. Surveillance also utilizes thresholds to dictate further action either through sampling, implementing mitigation strategies, or a combination of both. If surveillance thresholds have been met or exceeded, it is time to transition to suspected contamination sampling. Pre-determined samples sizes for surveillance sampling with thresholds (Table 1) and suspected contamination sampling with return to surveillance sampling thresholds can be found at the end of this resource (Table 2). This resource will detail how to interpret those pre-determined sample sizes for surveillance and suspected contamination. If electing to calculate sample sizes yourself, consult the additional resource titled “Calculating Sample Sizes and Thresholds” or if needing more information on how to coordinate the transition to suspected contamination sampling, consult the additional resource titled “Transitioning from Surveillance Sampling to Suspected Contamination Sampling.”

The pre-determined sample sizes depends on two factors, the probability of feed serving as a source for pathogen of interest and the severity of the pathogen in regards to species of interest. There are spectrums, from high to very low, within these two factors that will determine sample size.

Probability of feed serving as a source for pathogen of interest

Probability of feed serving as a source for pathogen of interest takes in account the potential feed ingredients and mitigation strategies already implemented at the feed mill.

- **High probability**
 - High probability indicates that there is immediate danger that the hazard will occur.
 - If there are no mitigation techniques in place at a feed mill, then this is the proper designation.
- **Medium probability**
 - Medium probability indicates that the hazard will probably occur if not controlled.
 - If a feed mill utilizes only point-in-time mitigation techniques, this is the appropriate designation.
 - Examples of point-in-time mitigation techniques include quarantining or holding ingredients, thermally processing feed, implementation of feed batch sequencing, or implementation of flushes after manufacturing certain diets.
 - These techniques can only guarantee that potential contamination has been reduced or infectivity of pathogen reduced, but doesn’t prevent recontamination.
 - If a feed mill has or utilizes rendered ingredients for diets, this is the appropriate designation.
 - Rendered ingredients are manufactured at a temperature range of 240-290°F for at least 40-90 minutes which has been shown to reduce pathogen contamination (Hamilton, 2006). However, this temperature range does not prevent recontamination during further feed manufacturing or delivery.
 - Transportation of these ingredients from rendering facilities also has a risk of pathogen introduction to a feed mill (Lowe et al., 2014) while these types of ingredients have been
shown to better support pathogen survival when compared to plant based ingredients (Dee et al., 2018)

- **Low probability**
 - Low probability indicates that it’s possible for hazard to occur if not controlled.
 - If a feed mill utilizes a chemical feed additive as a means to reduce pathogen contamination or infectivity, this is the appropriate designation.
 - Chemical feed additives have been shown to reduce pathogens in feed at time of application and remain active throughout the feed supply chain (Stewart et al., 2020).

- **Very low probability**
 - Very low probability indicates that it’s unlikely for the hazard to occur and an assumption that the hazard will not occur is warranted.
 - If a feed mill utilizes point-in-time mitigation techniques in combination with a chemical feed additive, this is the appropriate designation.

Severity of the pathogen of interest in regards to species of interest
The severity of the pathogen of interest in regards to species of interest is based on the consequences of the pathogen of interest if introduced into the production system via the feed supply chain. The type of production system served by the feed mill and the production system’s definition of mortality and morbidity will influence the designated severity.

- **High severity**
 - Pathogen of interest would cause high mortality and high morbidity if introduced into the production system.

- **Medium severity**
 - Pathogen of interest would cause high mortality and low morbidity if introduced into the production system.

- **Low severity**
 - Pathogen of interest would cause low mortality and high morbidity if introduced into the production system.

- **Very low severity**
 - Pathogen of interest would cause low mortality and low morbidity if introduced into the production system.
Table 1: Recommendations for surveillance sample size and thresholds based on severity of pathogen of interest and probability of pathogen being introduced through feed.

<table>
<thead>
<tr>
<th>Severity</th>
<th>HIGH Pathogen of interest would cause high mortality and high morbidity</th>
<th>MEDIUM Pathogen of interest would cause high mortality and low morbidity</th>
<th>LOW Pathogen of interest would cause low mortality and high morbidity</th>
<th>VERY LOW Pathogen of interest would cause low mortality and low morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>HIGH Immediate danger that the hazard will occur.</td>
<td>MEDIUM Hazard will probably occur if not controlled.</td>
<td>LOW It’s possible for hazard to occur if not controlled.</td>
<td>VERY LOW It’s unlikely for the hazard to occur and can assume that hazard will not occur.</td>
</tr>
<tr>
<td>75 samples/week: 10 feed samples 65 environmental samples</td>
<td>Threshold = 1 positive</td>
<td>75 samples/week: 10 feed samples 65 environmental samples</td>
<td>Threshold = 1 positive</td>
<td>5 samples/week: 1 feed sample 4 environmental samples</td>
</tr>
<tr>
<td>HIGH</td>
<td>75 samples/week: 10 feed samples 65 environmental samples</td>
<td>Threshold = 1 positive</td>
<td>15 samples/week: 5 feed samples 10 environmental samples</td>
<td>Threshold = 1 positive</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>15 samples/week: 2 feed samples 13 environmental samples</td>
<td>Threshold = 2 positives</td>
<td>8 samples/week: 2 feed samples 6 environmental samples</td>
<td>Threshold = 2 positives</td>
</tr>
<tr>
<td>LOW</td>
<td>25 samples/week: 1 feed sample 24 environmental samples</td>
<td>Threshold = 1 positive</td>
<td>15 samples/week: 1 feed sample 14 environmental samples</td>
<td>Threshold = 2 positives</td>
</tr>
<tr>
<td>VERY LOW</td>
<td>25 samples/week: 0 feed samples 25 environmental samples</td>
<td>Threshold = 1 positive</td>
<td>15 samples/week: 0 feed samples 15 environmental samples</td>
<td>Threshold = 2 positives</td>
</tr>
</tbody>
</table>

Kansas State University Feed Safety
Table 2: Recommendations for suspected contamination sample size and when to return to surveillance sampling based on severity of pathogen of interest and probability of pathogen of interest introduced through feed.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Severity</th>
<th>HIGH</th>
<th>MEDIUM</th>
<th>LOW</th>
<th>VERY LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>Pathogen of interest would cause high mortality and high morbidity</td>
<td>300 samples: 102 feed samples 198 environmental samples</td>
<td>Return to surveillance: no more than 3 positive samples</td>
<td>100 samples: 25 feed samples 75 environmental samples</td>
<td>Return to surveillance: no more than 3 positive sample</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Hazard will probably occur if not controlled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW</td>
<td>It’s possible for hazard to occur if not controlled.</td>
<td>100 samples: 15 feed sample 85 environmental samples</td>
<td>Return to surveillance: no more than 3 positive sample</td>
<td>60 samples: 5 feed samples 55 environmental samples</td>
<td>Return to surveillance: no more than 3 positive sample</td>
</tr>
<tr>
<td>VERY LOW</td>
<td>It’s unlikely for the hazard to occur and can assume that hazard will not occur.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References