Grain accounts for a major component and cost in livestock diets. The particle size of ground grain influences feed digestibility, feed efficiency, mixing performance, and pelleting. Therefore, periodic particle size evaluation is a necessary component of a feed-manufacturing quality-assurance program and is recommended by nutritionists. This publication describes the equipment used, procedure, costs, and interpretation of particle size analysis.

The standard for particle size analysis by sieving is published by the American Society of Agricultural and Biological Engineers (ASABE). As stated in their publication, Method of Determining and Expressing Fineness of Feed Materials by Sieving (ANSI/ASAE S319.4 FEB 2008 R2012), “The purpose of this standard is to define a test procedure to determine the fineness of feed ingredients and to define a method of expressing the particle size of the material.”

Laboratories that test particle size may obtain differing results because they use different procedures. For quality control, it is important to know the procedure used by the testing laboratory and how it relates to your particle size goals. Research has demonstrated that differences in mean particle size resulted from differences in methodology (Kalivoda et al., 2015; Stark and Chewning, 2012; Fahrenholz et al., 2010).

Kalivoda et al. (2015) reported that sieve shaker, time, use of agitators and flow agent influenced mean particle size and the variation or distribution in particle size measured (Table 1). No significant difference due to time (10 or 15 min) was found for particle size when sieve agitators and flow agents were used together. Figure 1 depicts the shift in the amount of particles collected on each sieve (U.S. Sieve No. 40 to pan) facilitated by the addition of a flow agent moving particles to screens with small openings.

Most research on particle size has been measured using the Tyler Ro-Tap (Figure 2) with sieve agitators (Figure 3) using a 10 minute sieving time without a flow agent. The arrangement of sieves, rubber balls (13 mm), and bristle sieve cleaners used for particle size analysis are shown in Table 2 and Figure 3. Screens are identified by the U.S. Sieve number, so care must be taken to use the correct sieve opening, since other sizing designations (e.g. Tyler) can have different opening diameters at the same number designations.

It also is important that sieves be properly cleaned between samples. Literature from the American Society for Testing and Materials (1972) recommends that a soft brass wire brush be used to clean sieves coarser than U.S. Sieve No. 100 and a nylon bristle brush for sieves finer than U.S. Sieve No. 100. It also may be necessary to wash the sieves routinely to remove build-up of fat and feed particles that cannot be removed with a brush. Sieves should be washed in warm, soapy water and dried to prevent corrosion.

Definitions

- **Geometric diameter average d_{gw}**: average particle size, in microns, of a sample.
- **Geometric standard deviation S_{gw}**: measurement of the particle size variation around the d_{gw}.

Test Procedures

A stack of sieves (each sieve possessing a different diameter opening) separates feed particles according to size. They are identified by diameter opening in millimeters or microns. It is recommended that the U.S. Standard, 8-inch diameter, half height sieve with a brass frame and mesh be used (ANSI/ASAE S319.4 FEB 2008 R2012).

Sieve agitators (Table 2) should be used to ensure that every particle has the same chance to pass through the openings, and a flow agent will prevent binding of material on the screens and agglomeration of particles among themselves.

Definitions

- **Geometric diameter average d_{gw}**: average particle size, in microns, of a sample.
- **Geometric standard deviation S_{gw}**: measurement of the particle size variation around the d_{gw}.

Test Procedures

A stack of sieves (each sieve possessing a different diameter opening) separates feed particles according to size. They are identified by diameter opening in millimeters or microns. It is recommended that the U.S. Standard, 8-inch diameter, half height sieve with a brass frame and mesh be used (ANSI/ASAE S319.4 FEB 2008 R2012).

Sieve agitators (Table 2) should be used to ensure that every particle has the same chance to pass through the openings, and a flow agent will prevent binding of material on the screens and agglomeration of particles among themselves.

It also is important that sieves be properly cleaned between samples. Literature from the American Society for Testing and Materials (1972) recommends that a soft brass wire brush be used to clean sieves coarser than U.S. Sieve No. 100 and a nylon bristle brush for sieves finer than U.S. Sieve No. 100. It also may be necessary to wash the sieves routinely to remove build-up of fat and feed particles that cannot be removed with a brush. Sieves should be washed in warm, soapy water and dried to prevent corrosion.
In the feed industry, computer software provides the easiest method for calculating particle size. Pfost (1976) described equations that can be used to calculate \(d_{gw} \), \(S_{gw} \), surface area, and particles per gram based upon a log-normal distribution of ground grain samples.

For further information on the calculation of \(d_{gw} \) and \(S_{gw} \), refer to ANSI/ASAE S319.4, Method of Determining and Expressing Fineness of Feed Materials by Sieving. The method for calculating the \(S_{gw} \) of samples was changed between ASAE S319.2 and ANSI/ASAE S319.3. ANSI/ASAE S319.4 used the method described in ANSI/ASAE S319.3 to calculate \(S_{gw} \).

Steps in Particle Size Analysis

1. Obtain a representative sample of 100 ± 5 grams by following the procedures for collecting and splitting a representative sample as described in the K-State Research and Extension publication MF–2036 Sampling: Procedures for Feed.

2. Ensure that each sieve is cleaned and agitators are in the proper arrangement with the sieve opening decreasing from top to bottom (as the U.S. Sieve No. increases, the opening size decreases; Table 2).

3. Weigh each sieve individually with the agitators to obtain a tare weight.

4. Weigh 0.5 grams of flow agent and mix with 100 ± grams sample. Read safety data sheet for the flow agent before product use.

5. Place the mixture of sample and flow agent on the top sieve and place sieve stack on the shaker machine. Allow shaker machine to run for 10 minutes.

6. Remove the sieve stack from shaker machine.

7. Weigh each sieve and retained material together to obtain the weight of sample on each sieve.

8. Thoroughly clean each sieve and agitators.

9. Enter the sample weight values in the appropriate columns of the data spreadsheet.

Equipment

- Ro-tap Sieve Shaker
- Scale accurate to at least 0.1 g
- Sieves
- Sieve balls (PDT–Balls) and brushes (PDT–Cleaner)
- Flow Agent: Read safety data sheet before product use (PDT–Agent)
- Brass sieve brush
- Nylon sieve brush

Seedburo Equipment Company
2293 S. Mount Prospect Road
Des Plaines, IL 60018
1-800-284-5779

Figure 1. Distribution graph depicting the quantity of particles collected on each sieve for a corn sample ground using a hammermill comparing when flow agent was used and not used (Kalivoda et al., 2015).
Table 1. Main effect of analytical method on geometric mean diameter and geometric standard deviation of various grains (Kalivoda et al., 2015)

<table>
<thead>
<tr>
<th>Method</th>
<th>Shake time, min</th>
<th>10</th>
<th>10</th>
<th>15</th>
<th>15</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve agitator inclusion</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow agent inclusion</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean particle size (d_{gw}), µm</td>
<td>586</td>
<td>554</td>
<td>615</td>
<td>576</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>Standard deviation (S_{gw})</td>
<td>2.23</td>
<td>2.62</td>
<td>2.09</td>
<td>2.27</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>ANSI/ASAE S319.2</td>
<td>485</td>
<td>576</td>
<td>467</td>
<td>487</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>ANSI/ASAE S319.4, µm</td>
<td>485</td>
<td>576</td>
<td>467</td>
<td>487</td>
<td>567</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Sieve and agitator arrangement

<table>
<thead>
<tr>
<th>U.S. Sieve No.</th>
<th>Sieve opening (µm)</th>
<th>Sieve agitator(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3,360</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>2,380</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>1,680</td>
<td>Three rubber balls</td>
</tr>
<tr>
<td>16</td>
<td>1,190</td>
<td>Three rubber balls</td>
</tr>
<tr>
<td>20</td>
<td>841</td>
<td>Three rubber balls</td>
</tr>
<tr>
<td>30</td>
<td>595</td>
<td>One rubber ball; one bristle sieve cleaner</td>
</tr>
<tr>
<td>40</td>
<td>420</td>
<td>One rubber ball; one bristle sieve cleaner</td>
</tr>
<tr>
<td>50</td>
<td>297</td>
<td>One rubber ball; one bristle sieve cleaner</td>
</tr>
<tr>
<td>70</td>
<td>210</td>
<td>One rubber ball; one bristle sieve cleaner</td>
</tr>
<tr>
<td>100</td>
<td>149</td>
<td>One bristle sieve cleaner</td>
</tr>
<tr>
<td>140</td>
<td>105</td>
<td>One bristle sieve cleaner</td>
</tr>
<tr>
<td>200</td>
<td>74</td>
<td>One bristle sieve cleaner</td>
</tr>
<tr>
<td>270</td>
<td>53</td>
<td>One bristle sieve cleaner</td>
</tr>
<tr>
<td>Pan</td>
<td>-</td>
<td>None</td>
</tr>
</tbody>
</table>
References

Charles Stark
Associate Professor
Grain Science and Industry
Kansas State University

Julie Kalivoda
Grain Science and Industry
Kansas State University

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned.

Publications from Kansas State University are available at: www.ksre.ksu.edu

Publications are reviewed or revised annually by appropriate faculty to reflect current research and practice. Date shown is that of publication or last revision. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved.

In each case, credit Charles Stark and Julie Kalivoda, Kansas State University, November 2016.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service

November, 2016